This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a set is closed under finite intersection, then it is a basis for a topology. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fiinbas | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ∈ 𝐵 ) → 𝐵 ∈ TopBases ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | ⊢ ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) | |
| 2 | eleq2 | ⊢ ( 𝑤 = ( 𝑥 ∩ 𝑦 ) → ( 𝑧 ∈ 𝑤 ↔ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ) | |
| 3 | sseq1 | ⊢ ( 𝑤 = ( 𝑥 ∩ 𝑦 ) → ( 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ↔ ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) ) ) | |
| 4 | 2 3 | anbi12d | ⊢ ( 𝑤 = ( 𝑥 ∩ 𝑦 ) → ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ↔ ( 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 5 | 4 | rspcev | ⊢ ( ( ( 𝑥 ∩ 𝑦 ) ∈ 𝐵 ∧ ( 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) ) ) → ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 6 | 1 5 | mpanr2 | ⊢ ( ( ( 𝑥 ∩ 𝑦 ) ∈ 𝐵 ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) → ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 7 | 6 | ralrimiva | ⊢ ( ( 𝑥 ∩ 𝑦 ) ∈ 𝐵 → ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 8 | 7 | a1i | ⊢ ( 𝐵 ∈ 𝐶 → ( ( 𝑥 ∩ 𝑦 ) ∈ 𝐵 → ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 9 | 8 | ralimdv | ⊢ ( 𝐵 ∈ 𝐶 → ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ∈ 𝐵 → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 10 | 9 | ralimdv | ⊢ ( 𝐵 ∈ 𝐶 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ∈ 𝐵 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 11 | isbasis2g | ⊢ ( 𝐵 ∈ 𝐶 → ( 𝐵 ∈ TopBases ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) | |
| 12 | 10 11 | sylibrd | ⊢ ( 𝐵 ∈ 𝐶 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ∈ 𝐵 → 𝐵 ∈ TopBases ) ) |
| 13 | 12 | imp | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ∈ 𝐵 ) → 𝐵 ∈ TopBases ) |