This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elements of a quotient set do not overlap. (Contributed by Rodolfo Medina, 12-Oct-2010) (Revised by Mario Carneiro, 11-Jul-2014) (Revised by Peter Mazsa, 3-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qsdisjALTV.1 | ⊢ ( 𝜑 → EqvRel 𝑅 ) | |
| qsdisjALTV.2 | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 / 𝑅 ) ) | ||
| qsdisjALTV.3 | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 / 𝑅 ) ) | ||
| Assertion | qsdisjALTV | ⊢ ( 𝜑 → ( 𝐵 = 𝐶 ∨ ( 𝐵 ∩ 𝐶 ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qsdisjALTV.1 | ⊢ ( 𝜑 → EqvRel 𝑅 ) | |
| 2 | qsdisjALTV.2 | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 / 𝑅 ) ) | |
| 3 | qsdisjALTV.3 | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 / 𝑅 ) ) | |
| 4 | eqid | ⊢ ( 𝐴 / 𝑅 ) = ( 𝐴 / 𝑅 ) | |
| 5 | eqeq1 | ⊢ ( [ 𝑥 ] 𝑅 = 𝐵 → ( [ 𝑥 ] 𝑅 = 𝐶 ↔ 𝐵 = 𝐶 ) ) | |
| 6 | ineq1 | ⊢ ( [ 𝑥 ] 𝑅 = 𝐵 → ( [ 𝑥 ] 𝑅 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) ) | |
| 7 | 6 | eqeq1d | ⊢ ( [ 𝑥 ] 𝑅 = 𝐵 → ( ( [ 𝑥 ] 𝑅 ∩ 𝐶 ) = ∅ ↔ ( 𝐵 ∩ 𝐶 ) = ∅ ) ) |
| 8 | 5 7 | orbi12d | ⊢ ( [ 𝑥 ] 𝑅 = 𝐵 → ( ( [ 𝑥 ] 𝑅 = 𝐶 ∨ ( [ 𝑥 ] 𝑅 ∩ 𝐶 ) = ∅ ) ↔ ( 𝐵 = 𝐶 ∨ ( 𝐵 ∩ 𝐶 ) = ∅ ) ) ) |
| 9 | eqeq2 | ⊢ ( [ 𝑦 ] 𝑅 = 𝐶 → ( [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ↔ [ 𝑥 ] 𝑅 = 𝐶 ) ) | |
| 10 | ineq2 | ⊢ ( [ 𝑦 ] 𝑅 = 𝐶 → ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ( [ 𝑥 ] 𝑅 ∩ 𝐶 ) ) | |
| 11 | 10 | eqeq1d | ⊢ ( [ 𝑦 ] 𝑅 = 𝐶 → ( ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ∅ ↔ ( [ 𝑥 ] 𝑅 ∩ 𝐶 ) = ∅ ) ) |
| 12 | 9 11 | orbi12d | ⊢ ( [ 𝑦 ] 𝑅 = 𝐶 → ( ( [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ∨ ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ∅ ) ↔ ( [ 𝑥 ] 𝑅 = 𝐶 ∨ ( [ 𝑥 ] 𝑅 ∩ 𝐶 ) = ∅ ) ) ) |
| 13 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → EqvRel 𝑅 ) |
| 14 | eqvreldisj | ⊢ ( EqvRel 𝑅 → ( [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ∨ ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ∅ ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ∨ ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ∅ ) ) |
| 16 | 4 12 15 | ectocld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ∈ ( 𝐴 / 𝑅 ) ) → ( [ 𝑥 ] 𝑅 = 𝐶 ∨ ( [ 𝑥 ] 𝑅 ∩ 𝐶 ) = ∅ ) ) |
| 17 | 3 16 | mpidan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( [ 𝑥 ] 𝑅 = 𝐶 ∨ ( [ 𝑥 ] 𝑅 ∩ 𝐶 ) = ∅ ) ) |
| 18 | 4 8 17 | ectocld | ⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 / 𝑅 ) ) → ( 𝐵 = 𝐶 ∨ ( 𝐵 ∩ 𝐶 ) = ∅ ) ) |
| 19 | 2 18 | mpdan | ⊢ ( 𝜑 → ( 𝐵 = 𝐶 ∨ ( 𝐵 ∩ 𝐶 ) = ∅ ) ) |