This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence classes do not overlap. In other words, two equivalence classes are either equal or disjoint. Theorem 74 of Suppes p. 83. (Contributed by NM, 15-Jun-2004) (Revised by Mario Carneiro, 9-Jul-2014) (Revised by Peter Mazsa, 2-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqvreldisj | ⊢ ( EqvRel 𝑅 → ( [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neq0 | ⊢ ( ¬ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ↔ ∃ 𝑥 𝑥 ∈ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ) | |
| 2 | simpl | ⊢ ( ( EqvRel 𝑅 ∧ 𝑥 ∈ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ) → EqvRel 𝑅 ) | |
| 3 | elinel1 | ⊢ ( 𝑥 ∈ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) → 𝑥 ∈ [ 𝐴 ] 𝑅 ) | |
| 4 | 3 | adantl | ⊢ ( ( EqvRel 𝑅 ∧ 𝑥 ∈ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ) → 𝑥 ∈ [ 𝐴 ] 𝑅 ) |
| 5 | ecexr | ⊢ ( 𝑥 ∈ [ 𝐴 ] 𝑅 → 𝐴 ∈ V ) | |
| 6 | 4 5 | syl | ⊢ ( ( EqvRel 𝑅 ∧ 𝑥 ∈ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ) → 𝐴 ∈ V ) |
| 7 | vex | ⊢ 𝑥 ∈ V | |
| 8 | elecALTV | ⊢ ( ( 𝐴 ∈ V ∧ 𝑥 ∈ V ) → ( 𝑥 ∈ [ 𝐴 ] 𝑅 ↔ 𝐴 𝑅 𝑥 ) ) | |
| 9 | 6 7 8 | sylancl | ⊢ ( ( EqvRel 𝑅 ∧ 𝑥 ∈ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ) → ( 𝑥 ∈ [ 𝐴 ] 𝑅 ↔ 𝐴 𝑅 𝑥 ) ) |
| 10 | 4 9 | mpbid | ⊢ ( ( EqvRel 𝑅 ∧ 𝑥 ∈ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ) → 𝐴 𝑅 𝑥 ) |
| 11 | elinel2 | ⊢ ( 𝑥 ∈ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) → 𝑥 ∈ [ 𝐵 ] 𝑅 ) | |
| 12 | 11 | adantl | ⊢ ( ( EqvRel 𝑅 ∧ 𝑥 ∈ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ) → 𝑥 ∈ [ 𝐵 ] 𝑅 ) |
| 13 | ecexr | ⊢ ( 𝑥 ∈ [ 𝐵 ] 𝑅 → 𝐵 ∈ V ) | |
| 14 | 12 13 | syl | ⊢ ( ( EqvRel 𝑅 ∧ 𝑥 ∈ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ) → 𝐵 ∈ V ) |
| 15 | elecALTV | ⊢ ( ( 𝐵 ∈ V ∧ 𝑥 ∈ V ) → ( 𝑥 ∈ [ 𝐵 ] 𝑅 ↔ 𝐵 𝑅 𝑥 ) ) | |
| 16 | 14 7 15 | sylancl | ⊢ ( ( EqvRel 𝑅 ∧ 𝑥 ∈ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ) → ( 𝑥 ∈ [ 𝐵 ] 𝑅 ↔ 𝐵 𝑅 𝑥 ) ) |
| 17 | 12 16 | mpbid | ⊢ ( ( EqvRel 𝑅 ∧ 𝑥 ∈ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ) → 𝐵 𝑅 𝑥 ) |
| 18 | 2 10 17 | eqvreltr4d | ⊢ ( ( EqvRel 𝑅 ∧ 𝑥 ∈ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ) → 𝐴 𝑅 𝐵 ) |
| 19 | 2 18 | eqvrelthi | ⊢ ( ( EqvRel 𝑅 ∧ 𝑥 ∈ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ) → [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) |
| 20 | 19 | ex | ⊢ ( EqvRel 𝑅 → ( 𝑥 ∈ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) → [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) ) |
| 21 | 20 | exlimdv | ⊢ ( EqvRel 𝑅 → ( ∃ 𝑥 𝑥 ∈ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) → [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) ) |
| 22 | 1 21 | biimtrid | ⊢ ( EqvRel 𝑅 → ( ¬ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ → [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) ) |
| 23 | 22 | orrd | ⊢ ( EqvRel 𝑅 → ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ∨ [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) ) |
| 24 | 23 | orcomd | ⊢ ( EqvRel 𝑅 → ( [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ) ) |