This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function F is the unique function defined by F[ x ] = A , provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016) (Revised by AV, 3-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qlift.1 | ⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 [ 𝑥 ] 𝑅 , 𝐴 〉 ) | |
| qlift.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑌 ) | ||
| qlift.3 | ⊢ ( 𝜑 → 𝑅 Er 𝑋 ) | ||
| qlift.4 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| qliftfun.4 | ⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) | ||
| Assertion | qliftfun | ⊢ ( 𝜑 → ( Fun 𝐹 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝐴 = 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qlift.1 | ⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 [ 𝑥 ] 𝑅 , 𝐴 〉 ) | |
| 2 | qlift.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑌 ) | |
| 3 | qlift.3 | ⊢ ( 𝜑 → 𝑅 Er 𝑋 ) | |
| 4 | qlift.4 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 5 | qliftfun.4 | ⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) | |
| 6 | 1 2 3 4 | qliftlem | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → [ 𝑥 ] 𝑅 ∈ ( 𝑋 / 𝑅 ) ) |
| 7 | eceq1 | ⊢ ( 𝑥 = 𝑦 → [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ) | |
| 8 | 1 6 2 7 5 | fliftfun | ⊢ ( 𝜑 → ( Fun 𝐹 ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 → 𝐴 = 𝐵 ) ) ) |
| 9 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 𝑅 𝑦 ) → 𝑅 Er 𝑋 ) |
| 10 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 𝑅 𝑦 ) → 𝑥 𝑅 𝑦 ) | |
| 11 | 9 10 | ercl | ⊢ ( ( 𝜑 ∧ 𝑥 𝑅 𝑦 ) → 𝑥 ∈ 𝑋 ) |
| 12 | 9 10 | ercl2 | ⊢ ( ( 𝜑 ∧ 𝑥 𝑅 𝑦 ) → 𝑦 ∈ 𝑋 ) |
| 13 | 11 12 | jca | ⊢ ( ( 𝜑 ∧ 𝑥 𝑅 𝑦 ) → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) |
| 14 | 13 | ex | ⊢ ( 𝜑 → ( 𝑥 𝑅 𝑦 → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) |
| 15 | 14 | pm4.71rd | ⊢ ( 𝜑 → ( 𝑥 𝑅 𝑦 ↔ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑅 𝑦 ) ) ) |
| 16 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑅 Er 𝑋 ) |
| 17 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 ∈ 𝑋 ) | |
| 18 | 16 17 | erth | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑅 𝑦 ↔ [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ) ) |
| 19 | 18 | pm5.32da | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑅 𝑦 ) ↔ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ) ) ) |
| 20 | 15 19 | bitrd | ⊢ ( 𝜑 → ( 𝑥 𝑅 𝑦 ↔ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ) ) ) |
| 21 | 20 | imbi1d | ⊢ ( 𝜑 → ( ( 𝑥 𝑅 𝑦 → 𝐴 = 𝐵 ) ↔ ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ) → 𝐴 = 𝐵 ) ) ) |
| 22 | impexp | ⊢ ( ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ) → 𝐴 = 𝐵 ) ↔ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 → 𝐴 = 𝐵 ) ) ) | |
| 23 | 21 22 | bitrdi | ⊢ ( 𝜑 → ( ( 𝑥 𝑅 𝑦 → 𝐴 = 𝐵 ) ↔ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 → 𝐴 = 𝐵 ) ) ) ) |
| 24 | 23 | 2albidv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝐴 = 𝐵 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 → 𝐴 = 𝐵 ) ) ) ) |
| 25 | r2al | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 → 𝐴 = 𝐵 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 → 𝐴 = 𝐵 ) ) ) | |
| 26 | 24 25 | bitr4di | ⊢ ( 𝜑 → ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝐴 = 𝐵 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 → 𝐴 = 𝐵 ) ) ) |
| 27 | 8 26 | bitr4d | ⊢ ( 𝜑 → ( Fun 𝐹 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝐴 = 𝐵 ) ) ) |