This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the relation F . (Contributed by Mario Carneiro, 23-Dec-2016) (Revised by AV, 3-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qlift.1 | ⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 [ 𝑥 ] 𝑅 , 𝐴 〉 ) | |
| qlift.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑌 ) | ||
| qlift.3 | ⊢ ( 𝜑 → 𝑅 Er 𝑋 ) | ||
| qlift.4 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| Assertion | qliftel | ⊢ ( 𝜑 → ( [ 𝐶 ] 𝑅 𝐹 𝐷 ↔ ∃ 𝑥 ∈ 𝑋 ( 𝐶 𝑅 𝑥 ∧ 𝐷 = 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qlift.1 | ⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 [ 𝑥 ] 𝑅 , 𝐴 〉 ) | |
| 2 | qlift.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑌 ) | |
| 3 | qlift.3 | ⊢ ( 𝜑 → 𝑅 Er 𝑋 ) | |
| 4 | qlift.4 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 5 | 1 2 3 4 | qliftlem | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → [ 𝑥 ] 𝑅 ∈ ( 𝑋 / 𝑅 ) ) |
| 6 | 1 5 2 | fliftel | ⊢ ( 𝜑 → ( [ 𝐶 ] 𝑅 𝐹 𝐷 ↔ ∃ 𝑥 ∈ 𝑋 ( [ 𝐶 ] 𝑅 = [ 𝑥 ] 𝑅 ∧ 𝐷 = 𝐴 ) ) ) |
| 7 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑅 Er 𝑋 ) |
| 8 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 9 | 7 8 | erth2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐶 𝑅 𝑥 ↔ [ 𝐶 ] 𝑅 = [ 𝑥 ] 𝑅 ) ) |
| 10 | 9 | anbi1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐶 𝑅 𝑥 ∧ 𝐷 = 𝐴 ) ↔ ( [ 𝐶 ] 𝑅 = [ 𝑥 ] 𝑅 ∧ 𝐷 = 𝐴 ) ) ) |
| 11 | 10 | rexbidva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑋 ( 𝐶 𝑅 𝑥 ∧ 𝐷 = 𝐴 ) ↔ ∃ 𝑥 ∈ 𝑋 ( [ 𝐶 ] 𝑅 = [ 𝑥 ] 𝑅 ∧ 𝐷 = 𝐴 ) ) ) |
| 12 | 6 11 | bitr4d | ⊢ ( 𝜑 → ( [ 𝐶 ] 𝑅 𝐹 𝐷 ↔ ∃ 𝑥 ∈ 𝑋 ( 𝐶 𝑅 𝑥 ∧ 𝐷 = 𝐴 ) ) ) |