This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the relation F . (Contributed by Mario Carneiro, 23-Dec-2016) (Revised by AV, 3-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qlift.1 | |- F = ran ( x e. X |-> <. [ x ] R , A >. ) |
|
| qlift.2 | |- ( ( ph /\ x e. X ) -> A e. Y ) |
||
| qlift.3 | |- ( ph -> R Er X ) |
||
| qlift.4 | |- ( ph -> X e. V ) |
||
| Assertion | qliftel | |- ( ph -> ( [ C ] R F D <-> E. x e. X ( C R x /\ D = A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qlift.1 | |- F = ran ( x e. X |-> <. [ x ] R , A >. ) |
|
| 2 | qlift.2 | |- ( ( ph /\ x e. X ) -> A e. Y ) |
|
| 3 | qlift.3 | |- ( ph -> R Er X ) |
|
| 4 | qlift.4 | |- ( ph -> X e. V ) |
|
| 5 | 1 2 3 4 | qliftlem | |- ( ( ph /\ x e. X ) -> [ x ] R e. ( X /. R ) ) |
| 6 | 1 5 2 | fliftel | |- ( ph -> ( [ C ] R F D <-> E. x e. X ( [ C ] R = [ x ] R /\ D = A ) ) ) |
| 7 | 3 | adantr | |- ( ( ph /\ x e. X ) -> R Er X ) |
| 8 | simpr | |- ( ( ph /\ x e. X ) -> x e. X ) |
|
| 9 | 7 8 | erth2 | |- ( ( ph /\ x e. X ) -> ( C R x <-> [ C ] R = [ x ] R ) ) |
| 10 | 9 | anbi1d | |- ( ( ph /\ x e. X ) -> ( ( C R x /\ D = A ) <-> ( [ C ] R = [ x ] R /\ D = A ) ) ) |
| 11 | 10 | rexbidva | |- ( ph -> ( E. x e. X ( C R x /\ D = A ) <-> E. x e. X ( [ C ] R = [ x ] R /\ D = A ) ) ) |
| 12 | 6 11 | bitr4d | |- ( ph -> ( [ C ] R F D <-> E. x e. X ( C R x /\ D = A ) ) ) |