This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An extensionality-like property for extended real ordering. (Contributed by Mario Carneiro, 3-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qextle | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ∈ ℚ ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) | |
| 2 | 1 | ralrimivw | ⊢ ( 𝐴 = 𝐵 → ∀ 𝑥 ∈ ℚ ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) |
| 3 | xrlttri2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ≠ 𝐵 ↔ ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ) ) | |
| 4 | qextltlem | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( ¬ ( 𝑥 < 𝐴 ↔ 𝑥 < 𝐵 ) ∧ ¬ ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) ) ) | |
| 5 | simpr | ⊢ ( ( ¬ ( 𝑥 < 𝐴 ↔ 𝑥 < 𝐵 ) ∧ ¬ ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) → ¬ ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) | |
| 6 | 5 | reximi | ⊢ ( ∃ 𝑥 ∈ ℚ ( ¬ ( 𝑥 < 𝐴 ↔ 𝑥 < 𝐵 ) ∧ ¬ ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) → ∃ 𝑥 ∈ ℚ ¬ ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) |
| 7 | 4 6 | syl6 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ¬ ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) ) |
| 8 | qextltlem | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐵 < 𝐴 → ∃ 𝑥 ∈ ℚ ( ¬ ( 𝑥 < 𝐵 ↔ 𝑥 < 𝐴 ) ∧ ¬ ( 𝑥 ≤ 𝐵 ↔ 𝑥 ≤ 𝐴 ) ) ) ) | |
| 9 | simpr | ⊢ ( ( ¬ ( 𝑥 < 𝐵 ↔ 𝑥 < 𝐴 ) ∧ ¬ ( 𝑥 ≤ 𝐵 ↔ 𝑥 ≤ 𝐴 ) ) → ¬ ( 𝑥 ≤ 𝐵 ↔ 𝑥 ≤ 𝐴 ) ) | |
| 10 | bicom | ⊢ ( ( 𝑥 ≤ 𝐵 ↔ 𝑥 ≤ 𝐴 ) ↔ ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) | |
| 11 | 9 10 | sylnib | ⊢ ( ( ¬ ( 𝑥 < 𝐵 ↔ 𝑥 < 𝐴 ) ∧ ¬ ( 𝑥 ≤ 𝐵 ↔ 𝑥 ≤ 𝐴 ) ) → ¬ ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) |
| 12 | 11 | reximi | ⊢ ( ∃ 𝑥 ∈ ℚ ( ¬ ( 𝑥 < 𝐵 ↔ 𝑥 < 𝐴 ) ∧ ¬ ( 𝑥 ≤ 𝐵 ↔ 𝑥 ≤ 𝐴 ) ) → ∃ 𝑥 ∈ ℚ ¬ ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) |
| 13 | 8 12 | syl6 | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐵 < 𝐴 → ∃ 𝑥 ∈ ℚ ¬ ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) ) |
| 14 | 13 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐵 < 𝐴 → ∃ 𝑥 ∈ ℚ ¬ ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) ) |
| 15 | 7 14 | jaod | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) → ∃ 𝑥 ∈ ℚ ¬ ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) ) |
| 16 | 3 15 | sylbid | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ≠ 𝐵 → ∃ 𝑥 ∈ ℚ ¬ ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) ) |
| 17 | rexnal | ⊢ ( ∃ 𝑥 ∈ ℚ ¬ ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ↔ ¬ ∀ 𝑥 ∈ ℚ ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) | |
| 18 | 16 17 | imbitrdi | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ≠ 𝐵 → ¬ ∀ 𝑥 ∈ ℚ ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) ) |
| 19 | 18 | necon4ad | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∀ 𝑥 ∈ ℚ ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) → 𝐴 = 𝐵 ) ) |
| 20 | 2 19 | impbid2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ∈ ℚ ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) ) |