This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of the product topology is a basic open set. (Contributed by Mario Carneiro, 3-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ptbas.1 | |- B = { x | E. g ( ( g Fn A /\ A. y e. A ( g ` y ) e. ( F ` y ) /\ E. z e. Fin A. y e. ( A \ z ) ( g ` y ) = U. ( F ` y ) ) /\ x = X_ y e. A ( g ` y ) ) } |
|
| Assertion | ptbasid | |- ( ( A e. V /\ F : A --> Top ) -> X_ k e. A U. ( F ` k ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptbas.1 | |- B = { x | E. g ( ( g Fn A /\ A. y e. A ( g ` y ) e. ( F ` y ) /\ E. z e. Fin A. y e. ( A \ z ) ( g ` y ) = U. ( F ` y ) ) /\ x = X_ y e. A ( g ` y ) ) } |
|
| 2 | simpl | |- ( ( A e. V /\ F : A --> Top ) -> A e. V ) |
|
| 3 | 0fi | |- (/) e. Fin |
|
| 4 | 3 | a1i | |- ( ( A e. V /\ F : A --> Top ) -> (/) e. Fin ) |
| 5 | ffvelcdm | |- ( ( F : A --> Top /\ k e. A ) -> ( F ` k ) e. Top ) |
|
| 6 | 5 | adantll | |- ( ( ( A e. V /\ F : A --> Top ) /\ k e. A ) -> ( F ` k ) e. Top ) |
| 7 | eqid | |- U. ( F ` k ) = U. ( F ` k ) |
|
| 8 | 7 | topopn | |- ( ( F ` k ) e. Top -> U. ( F ` k ) e. ( F ` k ) ) |
| 9 | 6 8 | syl | |- ( ( ( A e. V /\ F : A --> Top ) /\ k e. A ) -> U. ( F ` k ) e. ( F ` k ) ) |
| 10 | eqidd | |- ( ( ( A e. V /\ F : A --> Top ) /\ k e. ( A \ (/) ) ) -> U. ( F ` k ) = U. ( F ` k ) ) |
|
| 11 | 1 2 4 9 10 | elptr2 | |- ( ( A e. V /\ F : A --> Top ) -> X_ k e. A U. ( F ` k ) e. B ) |