This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define set of all projective subspaces. Based on definition of subspace in Holland95 p. 212. (Contributed by NM, 2-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-psubsp | ⊢ PSubSp = ( 𝑘 ∈ V ↦ { 𝑠 ∣ ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟 ∈ 𝑠 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cpsubsp | ⊢ PSubSp | |
| 1 | vk | ⊢ 𝑘 | |
| 2 | cvv | ⊢ V | |
| 3 | vs | ⊢ 𝑠 | |
| 4 | 3 | cv | ⊢ 𝑠 |
| 5 | catm | ⊢ Atoms | |
| 6 | 1 | cv | ⊢ 𝑘 |
| 7 | 6 5 | cfv | ⊢ ( Atoms ‘ 𝑘 ) |
| 8 | 4 7 | wss | ⊢ 𝑠 ⊆ ( Atoms ‘ 𝑘 ) |
| 9 | vp | ⊢ 𝑝 | |
| 10 | vq | ⊢ 𝑞 | |
| 11 | vr | ⊢ 𝑟 | |
| 12 | 11 | cv | ⊢ 𝑟 |
| 13 | cple | ⊢ le | |
| 14 | 6 13 | cfv | ⊢ ( le ‘ 𝑘 ) |
| 15 | 9 | cv | ⊢ 𝑝 |
| 16 | cjn | ⊢ join | |
| 17 | 6 16 | cfv | ⊢ ( join ‘ 𝑘 ) |
| 18 | 10 | cv | ⊢ 𝑞 |
| 19 | 15 18 17 | co | ⊢ ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) |
| 20 | 12 19 14 | wbr | ⊢ 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) |
| 21 | 12 4 | wcel | ⊢ 𝑟 ∈ 𝑠 |
| 22 | 20 21 | wi | ⊢ ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟 ∈ 𝑠 ) |
| 23 | 22 11 7 | wral | ⊢ ∀ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟 ∈ 𝑠 ) |
| 24 | 23 10 4 | wral | ⊢ ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟 ∈ 𝑠 ) |
| 25 | 24 9 4 | wral | ⊢ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟 ∈ 𝑠 ) |
| 26 | 8 25 | wa | ⊢ ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟 ∈ 𝑠 ) ) |
| 27 | 26 3 | cab | ⊢ { 𝑠 ∣ ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟 ∈ 𝑠 ) ) } |
| 28 | 1 2 27 | cmpt | ⊢ ( 𝑘 ∈ V ↦ { 𝑠 ∣ ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟 ∈ 𝑠 ) ) } ) |
| 29 | 0 28 | wceq | ⊢ PSubSp = ( 𝑘 ∈ V ↦ { 𝑠 ∣ ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟 ∈ 𝑠 ) ) } ) |