This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a projective subspace. (Contributed by NM, 13-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psubspset.l | |- .<_ = ( le ` K ) |
|
| psubspset.j | |- .\/ = ( join ` K ) |
||
| psubspset.a | |- A = ( Atoms ` K ) |
||
| psubspset.s | |- S = ( PSubSp ` K ) |
||
| Assertion | psubspi | |- ( ( ( K e. D /\ X e. S /\ P e. A ) /\ E. q e. X E. r e. X P .<_ ( q .\/ r ) ) -> P e. X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psubspset.l | |- .<_ = ( le ` K ) |
|
| 2 | psubspset.j | |- .\/ = ( join ` K ) |
|
| 3 | psubspset.a | |- A = ( Atoms ` K ) |
|
| 4 | psubspset.s | |- S = ( PSubSp ` K ) |
|
| 5 | 1 2 3 4 | ispsubsp2 | |- ( K e. D -> ( X e. S <-> ( X C_ A /\ A. p e. A ( E. q e. X E. r e. X p .<_ ( q .\/ r ) -> p e. X ) ) ) ) |
| 6 | 5 | simplbda | |- ( ( K e. D /\ X e. S ) -> A. p e. A ( E. q e. X E. r e. X p .<_ ( q .\/ r ) -> p e. X ) ) |
| 7 | 6 | ex | |- ( K e. D -> ( X e. S -> A. p e. A ( E. q e. X E. r e. X p .<_ ( q .\/ r ) -> p e. X ) ) ) |
| 8 | breq1 | |- ( p = P -> ( p .<_ ( q .\/ r ) <-> P .<_ ( q .\/ r ) ) ) |
|
| 9 | 8 | 2rexbidv | |- ( p = P -> ( E. q e. X E. r e. X p .<_ ( q .\/ r ) <-> E. q e. X E. r e. X P .<_ ( q .\/ r ) ) ) |
| 10 | eleq1 | |- ( p = P -> ( p e. X <-> P e. X ) ) |
|
| 11 | 9 10 | imbi12d | |- ( p = P -> ( ( E. q e. X E. r e. X p .<_ ( q .\/ r ) -> p e. X ) <-> ( E. q e. X E. r e. X P .<_ ( q .\/ r ) -> P e. X ) ) ) |
| 12 | 11 | rspccv | |- ( A. p e. A ( E. q e. X E. r e. X p .<_ ( q .\/ r ) -> p e. X ) -> ( P e. A -> ( E. q e. X E. r e. X P .<_ ( q .\/ r ) -> P e. X ) ) ) |
| 13 | 7 12 | syl6 | |- ( K e. D -> ( X e. S -> ( P e. A -> ( E. q e. X E. r e. X P .<_ ( q .\/ r ) -> P e. X ) ) ) ) |
| 14 | 13 | 3imp1 | |- ( ( ( K e. D /\ X e. S /\ P e. A ) /\ E. q e. X E. r e. X P .<_ ( q .\/ r ) ) -> P e. X ) |