This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Polynomial evaluation
psrbagev2
Metamath Proof Explorer
Description: Closure of a sum using a bag of multipliers. (Contributed by Stefan
O'Rear , 9-Mar-2015) (Proof shortened by AV , 18-Jul-2019) (Revised by AV , 11-Apr-2024) Remove a sethood hypothesis. (Revised by SN , 7-Aug-2024)
Ref
Expression
Hypotheses
psrbagev2.d
⊢ D = h ∈ ℕ 0 I | h -1 ℕ ∈ Fin
psrbagev2.c
⊢ C = Base T
psrbagev2.x
⊢ · ˙ = ⋅ T
psrbagev2.t
⊢ φ → T ∈ CMnd
psrbagev2.b
⊢ φ → B ∈ D
psrbagev2.g
⊢ φ → G : I ⟶ C
Assertion
psrbagev2
⊢ φ → ∑ T B · ˙ f G ∈ C
Proof
Step
Hyp
Ref
Expression
1
psrbagev2.d
⊢ D = h ∈ ℕ 0 I | h -1 ℕ ∈ Fin
2
psrbagev2.c
⊢ C = Base T
3
psrbagev2.x
⊢ · ˙ = ⋅ T
4
psrbagev2.t
⊢ φ → T ∈ CMnd
5
psrbagev2.b
⊢ φ → B ∈ D
6
psrbagev2.g
⊢ φ → G : I ⟶ C
7
eqid
⊢ 0 T = 0 T
8
ovexd
⊢ φ → B · ˙ f G ∈ V
9
1 2 3 7 4 5 6
psrbagev1
⊢ φ → B · ˙ f G : I ⟶ C ∧ finSupp 0 T ⁡ B · ˙ f G
10
9
simpld
⊢ φ → B · ˙ f G : I ⟶ C
11
10
ffnd
⊢ φ → B · ˙ f G Fn I
12
8 11
fndmexd
⊢ φ → I ∈ V
13
9
simprd
⊢ φ → finSupp 0 T ⁡ B · ˙ f G
14
2 7 4 12 10 13
gsumcl
⊢ φ → ∑ T B · ˙ f G ∈ C