This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function definition of the permutation sign function for permutations of finite sets. (Contributed by AV, 13-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnfvalfi.g | |- G = ( SymGrp ` D ) |
|
| psgnfvalfi.b | |- B = ( Base ` G ) |
||
| psgnfvalfi.t | |- T = ran ( pmTrsp ` D ) |
||
| psgnfvalfi.n | |- N = ( pmSgn ` D ) |
||
| Assertion | psgnfvalfi | |- ( D e. Fin -> N = ( x e. B |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnfvalfi.g | |- G = ( SymGrp ` D ) |
|
| 2 | psgnfvalfi.b | |- B = ( Base ` G ) |
|
| 3 | psgnfvalfi.t | |- T = ran ( pmTrsp ` D ) |
|
| 4 | psgnfvalfi.n | |- N = ( pmSgn ` D ) |
|
| 5 | eqid | |- { p e. B | dom ( p \ _I ) e. Fin } = { p e. B | dom ( p \ _I ) e. Fin } |
|
| 6 | 1 2 5 3 4 | psgnfval | |- N = ( x e. { p e. B | dom ( p \ _I ) e. Fin } |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 7 | 1 2 | sygbasnfpfi | |- ( ( D e. Fin /\ p e. B ) -> dom ( p \ _I ) e. Fin ) |
| 8 | 7 | ralrimiva | |- ( D e. Fin -> A. p e. B dom ( p \ _I ) e. Fin ) |
| 9 | rabid2 | |- ( B = { p e. B | dom ( p \ _I ) e. Fin } <-> A. p e. B dom ( p \ _I ) e. Fin ) |
|
| 10 | 8 9 | sylibr | |- ( D e. Fin -> B = { p e. B | dom ( p \ _I ) e. Fin } ) |
| 11 | 10 | eqcomd | |- ( D e. Fin -> { p e. B | dom ( p \ _I ) e. Fin } = B ) |
| 12 | 11 | mpteq1d | |- ( D e. Fin -> ( x e. { p e. B | dom ( p \ _I ) e. Fin } |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) = ( x e. B |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) ) |
| 13 | 6 12 | eqtrid | |- ( D e. Fin -> N = ( x e. B |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) ) |