This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain and range of a class are included in its double union. (Contributed by NM, 13-May-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmrnssfld | ⊢ ( dom 𝐴 ∪ ran 𝐴 ) ⊆ ∪ ∪ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑥 ∈ V | |
| 2 | 1 | eldm2 | ⊢ ( 𝑥 ∈ dom 𝐴 ↔ ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) |
| 3 | 1 | prid1 | ⊢ 𝑥 ∈ { 𝑥 , 𝑦 } |
| 4 | vex | ⊢ 𝑦 ∈ V | |
| 5 | 1 4 | uniop | ⊢ ∪ 〈 𝑥 , 𝑦 〉 = { 𝑥 , 𝑦 } |
| 6 | 1 4 | uniopel | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → ∪ 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ) |
| 7 | 5 6 | eqeltrrid | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → { 𝑥 , 𝑦 } ∈ ∪ 𝐴 ) |
| 8 | elssuni | ⊢ ( { 𝑥 , 𝑦 } ∈ ∪ 𝐴 → { 𝑥 , 𝑦 } ⊆ ∪ ∪ 𝐴 ) | |
| 9 | 7 8 | syl | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → { 𝑥 , 𝑦 } ⊆ ∪ ∪ 𝐴 ) |
| 10 | 9 | sseld | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → ( 𝑥 ∈ { 𝑥 , 𝑦 } → 𝑥 ∈ ∪ ∪ 𝐴 ) ) |
| 11 | 3 10 | mpi | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 𝑥 ∈ ∪ ∪ 𝐴 ) |
| 12 | 11 | exlimiv | ⊢ ( ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 𝑥 ∈ ∪ ∪ 𝐴 ) |
| 13 | 2 12 | sylbi | ⊢ ( 𝑥 ∈ dom 𝐴 → 𝑥 ∈ ∪ ∪ 𝐴 ) |
| 14 | 13 | ssriv | ⊢ dom 𝐴 ⊆ ∪ ∪ 𝐴 |
| 15 | 4 | elrn2 | ⊢ ( 𝑦 ∈ ran 𝐴 ↔ ∃ 𝑥 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) |
| 16 | 4 | prid2 | ⊢ 𝑦 ∈ { 𝑥 , 𝑦 } |
| 17 | 9 | sseld | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → ( 𝑦 ∈ { 𝑥 , 𝑦 } → 𝑦 ∈ ∪ ∪ 𝐴 ) ) |
| 18 | 16 17 | mpi | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 𝑦 ∈ ∪ ∪ 𝐴 ) |
| 19 | 18 | exlimiv | ⊢ ( ∃ 𝑥 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 𝑦 ∈ ∪ ∪ 𝐴 ) |
| 20 | 15 19 | sylbi | ⊢ ( 𝑦 ∈ ran 𝐴 → 𝑦 ∈ ∪ ∪ 𝐴 ) |
| 21 | 20 | ssriv | ⊢ ran 𝐴 ⊆ ∪ ∪ 𝐴 |
| 22 | 14 21 | unssi | ⊢ ( dom 𝐴 ∪ ran 𝐴 ) ⊆ ∪ ∪ 𝐴 |