This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordered pair is well-founded if its elements are. (Contributed by Mario Carneiro, 10-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opwf | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → 〈 𝐴 , 𝐵 〉 ∈ ∪ ( 𝑅1 “ On ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfopg | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → 〈 𝐴 , 𝐵 〉 = { { 𝐴 } , { 𝐴 , 𝐵 } } ) | |
| 2 | snwf | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → { 𝐴 } ∈ ∪ ( 𝑅1 “ On ) ) | |
| 3 | prwf | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → { 𝐴 , 𝐵 } ∈ ∪ ( 𝑅1 “ On ) ) | |
| 4 | prwf | ⊢ ( ( { 𝐴 } ∈ ∪ ( 𝑅1 “ On ) ∧ { 𝐴 , 𝐵 } ∈ ∪ ( 𝑅1 “ On ) ) → { { 𝐴 } , { 𝐴 , 𝐵 } } ∈ ∪ ( 𝑅1 “ On ) ) | |
| 5 | 2 3 4 | syl2an2r | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → { { 𝐴 } , { 𝐴 , 𝐵 } } ∈ ∪ ( 𝑅1 “ On ) ) |
| 6 | 1 5 | eqeltrd | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → 〈 𝐴 , 𝐵 〉 ∈ ∪ ( 𝑅1 “ On ) ) |