This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An unordered pair is well-founded if its elements are. (Contributed by Mario Carneiro, 10-Jun-2013) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prwf | |- ( ( A e. U. ( R1 " On ) /\ B e. U. ( R1 " On ) ) -> { A , B } e. U. ( R1 " On ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr | |- { A , B } = ( { A } u. { B } ) |
|
| 2 | snwf | |- ( A e. U. ( R1 " On ) -> { A } e. U. ( R1 " On ) ) |
|
| 3 | snwf | |- ( B e. U. ( R1 " On ) -> { B } e. U. ( R1 " On ) ) |
|
| 4 | unwf | |- ( ( { A } e. U. ( R1 " On ) /\ { B } e. U. ( R1 " On ) ) <-> ( { A } u. { B } ) e. U. ( R1 " On ) ) |
|
| 5 | 4 | biimpi | |- ( ( { A } e. U. ( R1 " On ) /\ { B } e. U. ( R1 " On ) ) -> ( { A } u. { B } ) e. U. ( R1 " On ) ) |
| 6 | 2 3 5 | syl2an | |- ( ( A e. U. ( R1 " On ) /\ B e. U. ( R1 " On ) ) -> ( { A } u. { B } ) e. U. ( R1 " On ) ) |
| 7 | 1 6 | eqeltrid | |- ( ( A e. U. ( R1 " On ) /\ B e. U. ( R1 " On ) ) -> { A , B } e. U. ( R1 " On ) ) |