This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prter3 : a rearrangement of conjuncts. (Contributed by Rodolfo Medina, 20-Oct-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prtlem70 | ⊢ ( ( ( ( 𝜓 ∧ 𝜂 ) ∧ ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜒 ∧ 𝜏 ) ) ) ∧ 𝜑 ) ↔ ( ( 𝜑 ∧ ( 𝜓 ∧ ( 𝜒 ∧ ( 𝜃 ∧ 𝜏 ) ) ) ) ∧ 𝜂 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜑 ∧ 𝜃 ) ) ∧ ( 𝜒 ∧ 𝜏 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜒 ∧ 𝜏 ) ) ) ) | |
| 2 | 1 | anbi1i | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜑 ∧ 𝜃 ) ) ∧ ( 𝜒 ∧ 𝜏 ) ) ∧ 𝜂 ) ↔ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜒 ∧ 𝜏 ) ) ) ∧ 𝜂 ) ) |
| 3 | anandi | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜑 ∧ 𝜃 ) ) ) | |
| 4 | 3 | anbi1i | ⊢ ( ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) ∧ ( 𝜒 ∧ 𝜏 ) ) ↔ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜑 ∧ 𝜃 ) ) ∧ ( 𝜒 ∧ 𝜏 ) ) ) |
| 5 | 4 | anbi1i | ⊢ ( ( ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) ∧ ( 𝜒 ∧ 𝜏 ) ) ∧ 𝜂 ) ↔ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜑 ∧ 𝜃 ) ) ∧ ( 𝜒 ∧ 𝜏 ) ) ∧ 𝜂 ) ) |
| 6 | anass | ⊢ ( ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜂 ) ) ∧ ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜒 ∧ 𝜏 ) ) ) ↔ ( 𝜑 ∧ ( ( 𝜓 ∧ 𝜂 ) ∧ ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜒 ∧ 𝜏 ) ) ) ) ) | |
| 7 | anass | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜂 ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ 𝜂 ) ) ) | |
| 8 | 7 | anbi1i | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜂 ) ∧ ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜒 ∧ 𝜏 ) ) ) ↔ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜂 ) ) ∧ ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜒 ∧ 𝜏 ) ) ) ) |
| 9 | ancom | ⊢ ( ( ( ( 𝜓 ∧ 𝜂 ) ∧ ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜒 ∧ 𝜏 ) ) ) ∧ 𝜑 ) ↔ ( 𝜑 ∧ ( ( 𝜓 ∧ 𝜂 ) ∧ ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜒 ∧ 𝜏 ) ) ) ) ) | |
| 10 | 6 8 9 | 3bitr4ri | ⊢ ( ( ( ( 𝜓 ∧ 𝜂 ) ∧ ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜒 ∧ 𝜏 ) ) ) ∧ 𝜑 ) ↔ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜂 ) ∧ ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜒 ∧ 𝜏 ) ) ) ) |
| 11 | ancom | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜂 ) ↔ ( 𝜂 ∧ ( 𝜑 ∧ 𝜓 ) ) ) | |
| 12 | 11 | anbi1i | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜂 ) ∧ ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜒 ∧ 𝜏 ) ) ) ↔ ( ( 𝜂 ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜒 ∧ 𝜏 ) ) ) ) |
| 13 | anass | ⊢ ( ( ( 𝜂 ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜒 ∧ 𝜏 ) ) ) ↔ ( 𝜂 ∧ ( ( 𝜑 ∧ 𝜓 ) ∧ ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜒 ∧ 𝜏 ) ) ) ) ) | |
| 14 | ancom | ⊢ ( ( 𝜂 ∧ ( ( 𝜑 ∧ 𝜓 ) ∧ ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜒 ∧ 𝜏 ) ) ) ) ↔ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜒 ∧ 𝜏 ) ) ) ∧ 𝜂 ) ) | |
| 15 | 13 14 | bitri | ⊢ ( ( ( 𝜂 ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜒 ∧ 𝜏 ) ) ) ↔ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜒 ∧ 𝜏 ) ) ) ∧ 𝜂 ) ) |
| 16 | 10 12 15 | 3bitri | ⊢ ( ( ( ( 𝜓 ∧ 𝜂 ) ∧ ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜒 ∧ 𝜏 ) ) ) ∧ 𝜑 ) ↔ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜒 ∧ 𝜏 ) ) ) ∧ 𝜂 ) ) |
| 17 | 2 5 16 | 3bitr4ri | ⊢ ( ( ( ( 𝜓 ∧ 𝜂 ) ∧ ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜒 ∧ 𝜏 ) ) ) ∧ 𝜑 ) ↔ ( ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) ∧ ( 𝜒 ∧ 𝜏 ) ) ∧ 𝜂 ) ) |
| 18 | anass | ⊢ ( ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) ∧ ( 𝜒 ∧ 𝜏 ) ) ↔ ( 𝜑 ∧ ( ( 𝜓 ∧ 𝜃 ) ∧ ( 𝜒 ∧ 𝜏 ) ) ) ) | |
| 19 | 18 | anbi1i | ⊢ ( ( ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) ∧ ( 𝜒 ∧ 𝜏 ) ) ∧ 𝜂 ) ↔ ( ( 𝜑 ∧ ( ( 𝜓 ∧ 𝜃 ) ∧ ( 𝜒 ∧ 𝜏 ) ) ) ∧ 𝜂 ) ) |
| 20 | an4 | ⊢ ( ( ( 𝜓 ∧ 𝜃 ) ∧ ( 𝜒 ∧ 𝜏 ) ) ↔ ( ( 𝜓 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜏 ) ) ) | |
| 21 | anass | ⊢ ( ( ( 𝜓 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜏 ) ) ↔ ( 𝜓 ∧ ( 𝜒 ∧ ( 𝜃 ∧ 𝜏 ) ) ) ) | |
| 22 | 20 21 | bitri | ⊢ ( ( ( 𝜓 ∧ 𝜃 ) ∧ ( 𝜒 ∧ 𝜏 ) ) ↔ ( 𝜓 ∧ ( 𝜒 ∧ ( 𝜃 ∧ 𝜏 ) ) ) ) |
| 23 | 22 | anbi2i | ⊢ ( ( 𝜑 ∧ ( ( 𝜓 ∧ 𝜃 ) ∧ ( 𝜒 ∧ 𝜏 ) ) ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ ( 𝜒 ∧ ( 𝜃 ∧ 𝜏 ) ) ) ) ) |
| 24 | 23 | anbi1i | ⊢ ( ( ( 𝜑 ∧ ( ( 𝜓 ∧ 𝜃 ) ∧ ( 𝜒 ∧ 𝜏 ) ) ) ∧ 𝜂 ) ↔ ( ( 𝜑 ∧ ( 𝜓 ∧ ( 𝜒 ∧ ( 𝜃 ∧ 𝜏 ) ) ) ) ∧ 𝜂 ) ) |
| 25 | 17 19 24 | 3bitri | ⊢ ( ( ( ( 𝜓 ∧ 𝜂 ) ∧ ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜒 ∧ 𝜏 ) ) ) ∧ 𝜑 ) ↔ ( ( 𝜑 ∧ ( 𝜓 ∧ ( 𝜒 ∧ ( 𝜃 ∧ 𝜏 ) ) ) ) ∧ 𝜂 ) ) |