This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prter3 : a rearrangement of conjuncts. (Contributed by Rodolfo Medina, 20-Oct-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prtlem70 | |- ( ( ( ( ps /\ et ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) /\ ph ) <-> ( ( ph /\ ( ps /\ ( ch /\ ( th /\ ta ) ) ) ) /\ et ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass | |- ( ( ( ( ph /\ ps ) /\ ( ph /\ th ) ) /\ ( ch /\ ta ) ) <-> ( ( ph /\ ps ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) ) |
|
| 2 | 1 | anbi1i | |- ( ( ( ( ( ph /\ ps ) /\ ( ph /\ th ) ) /\ ( ch /\ ta ) ) /\ et ) <-> ( ( ( ph /\ ps ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) /\ et ) ) |
| 3 | anandi | |- ( ( ph /\ ( ps /\ th ) ) <-> ( ( ph /\ ps ) /\ ( ph /\ th ) ) ) |
|
| 4 | 3 | anbi1i | |- ( ( ( ph /\ ( ps /\ th ) ) /\ ( ch /\ ta ) ) <-> ( ( ( ph /\ ps ) /\ ( ph /\ th ) ) /\ ( ch /\ ta ) ) ) |
| 5 | 4 | anbi1i | |- ( ( ( ( ph /\ ( ps /\ th ) ) /\ ( ch /\ ta ) ) /\ et ) <-> ( ( ( ( ph /\ ps ) /\ ( ph /\ th ) ) /\ ( ch /\ ta ) ) /\ et ) ) |
| 6 | anass | |- ( ( ( ph /\ ( ps /\ et ) ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) <-> ( ph /\ ( ( ps /\ et ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) ) ) |
|
| 7 | anass | |- ( ( ( ph /\ ps ) /\ et ) <-> ( ph /\ ( ps /\ et ) ) ) |
|
| 8 | 7 | anbi1i | |- ( ( ( ( ph /\ ps ) /\ et ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) <-> ( ( ph /\ ( ps /\ et ) ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) ) |
| 9 | ancom | |- ( ( ( ( ps /\ et ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) /\ ph ) <-> ( ph /\ ( ( ps /\ et ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) ) ) |
|
| 10 | 6 8 9 | 3bitr4ri | |- ( ( ( ( ps /\ et ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) /\ ph ) <-> ( ( ( ph /\ ps ) /\ et ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) ) |
| 11 | ancom | |- ( ( ( ph /\ ps ) /\ et ) <-> ( et /\ ( ph /\ ps ) ) ) |
|
| 12 | 11 | anbi1i | |- ( ( ( ( ph /\ ps ) /\ et ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) <-> ( ( et /\ ( ph /\ ps ) ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) ) |
| 13 | anass | |- ( ( ( et /\ ( ph /\ ps ) ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) <-> ( et /\ ( ( ph /\ ps ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) ) ) |
|
| 14 | ancom | |- ( ( et /\ ( ( ph /\ ps ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) ) <-> ( ( ( ph /\ ps ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) /\ et ) ) |
|
| 15 | 13 14 | bitri | |- ( ( ( et /\ ( ph /\ ps ) ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) <-> ( ( ( ph /\ ps ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) /\ et ) ) |
| 16 | 10 12 15 | 3bitri | |- ( ( ( ( ps /\ et ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) /\ ph ) <-> ( ( ( ph /\ ps ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) /\ et ) ) |
| 17 | 2 5 16 | 3bitr4ri | |- ( ( ( ( ps /\ et ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) /\ ph ) <-> ( ( ( ph /\ ( ps /\ th ) ) /\ ( ch /\ ta ) ) /\ et ) ) |
| 18 | anass | |- ( ( ( ph /\ ( ps /\ th ) ) /\ ( ch /\ ta ) ) <-> ( ph /\ ( ( ps /\ th ) /\ ( ch /\ ta ) ) ) ) |
|
| 19 | 18 | anbi1i | |- ( ( ( ( ph /\ ( ps /\ th ) ) /\ ( ch /\ ta ) ) /\ et ) <-> ( ( ph /\ ( ( ps /\ th ) /\ ( ch /\ ta ) ) ) /\ et ) ) |
| 20 | an4 | |- ( ( ( ps /\ th ) /\ ( ch /\ ta ) ) <-> ( ( ps /\ ch ) /\ ( th /\ ta ) ) ) |
|
| 21 | anass | |- ( ( ( ps /\ ch ) /\ ( th /\ ta ) ) <-> ( ps /\ ( ch /\ ( th /\ ta ) ) ) ) |
|
| 22 | 20 21 | bitri | |- ( ( ( ps /\ th ) /\ ( ch /\ ta ) ) <-> ( ps /\ ( ch /\ ( th /\ ta ) ) ) ) |
| 23 | 22 | anbi2i | |- ( ( ph /\ ( ( ps /\ th ) /\ ( ch /\ ta ) ) ) <-> ( ph /\ ( ps /\ ( ch /\ ( th /\ ta ) ) ) ) ) |
| 24 | 23 | anbi1i | |- ( ( ( ph /\ ( ( ps /\ th ) /\ ( ch /\ ta ) ) ) /\ et ) <-> ( ( ph /\ ( ps /\ ( ch /\ ( th /\ ta ) ) ) ) /\ et ) ) |
| 25 | 17 19 24 | 3bitri | |- ( ( ( ( ps /\ et ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) /\ ph ) <-> ( ( ph /\ ( ps /\ ( ch /\ ( th /\ ta ) ) ) ) /\ et ) ) |