This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prter3 . (Contributed by Rodolfo Medina, 19-Oct-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prtlem100 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝐵 ∈ 𝑥 ∧ 𝜑 ) ↔ ∃ 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) ( 𝐵 ∈ 𝑥 ∧ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ ( 𝐵 ∈ 𝑥 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ≠ ∅ ∧ ( 𝐵 ∈ 𝑥 ∧ 𝜑 ) ) ) ) | |
| 2 | eldifsn | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ ∅ ) ) | |
| 3 | 2 | anbi1i | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) ∧ ( 𝐵 ∈ 𝑥 ∧ 𝜑 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ ( 𝐵 ∈ 𝑥 ∧ 𝜑 ) ) ) |
| 4 | ne0i | ⊢ ( 𝐵 ∈ 𝑥 → 𝑥 ≠ ∅ ) | |
| 5 | 4 | pm4.71ri | ⊢ ( 𝐵 ∈ 𝑥 ↔ ( 𝑥 ≠ ∅ ∧ 𝐵 ∈ 𝑥 ) ) |
| 6 | 5 | anbi1i | ⊢ ( ( 𝐵 ∈ 𝑥 ∧ 𝜑 ) ↔ ( ( 𝑥 ≠ ∅ ∧ 𝐵 ∈ 𝑥 ) ∧ 𝜑 ) ) |
| 7 | anass | ⊢ ( ( ( 𝑥 ≠ ∅ ∧ 𝐵 ∈ 𝑥 ) ∧ 𝜑 ) ↔ ( 𝑥 ≠ ∅ ∧ ( 𝐵 ∈ 𝑥 ∧ 𝜑 ) ) ) | |
| 8 | 6 7 | bitri | ⊢ ( ( 𝐵 ∈ 𝑥 ∧ 𝜑 ) ↔ ( 𝑥 ≠ ∅ ∧ ( 𝐵 ∈ 𝑥 ∧ 𝜑 ) ) ) |
| 9 | 8 | anbi2i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝐵 ∈ 𝑥 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ≠ ∅ ∧ ( 𝐵 ∈ 𝑥 ∧ 𝜑 ) ) ) ) |
| 10 | 1 3 9 | 3bitr4ri | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝐵 ∈ 𝑥 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) ∧ ( 𝐵 ∈ 𝑥 ∧ 𝜑 ) ) ) |
| 11 | 10 | rexbii2 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝐵 ∈ 𝑥 ∧ 𝜑 ) ↔ ∃ 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) ( 𝐵 ∈ 𝑥 ∧ 𝜑 ) ) |