This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prter3 . (Contributed by Rodolfo Medina, 19-Oct-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prtlem100 | |- ( E. x e. A ( B e. x /\ ph ) <-> E. x e. ( A \ { (/) } ) ( B e. x /\ ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass | |- ( ( ( x e. A /\ x =/= (/) ) /\ ( B e. x /\ ph ) ) <-> ( x e. A /\ ( x =/= (/) /\ ( B e. x /\ ph ) ) ) ) |
|
| 2 | eldifsn | |- ( x e. ( A \ { (/) } ) <-> ( x e. A /\ x =/= (/) ) ) |
|
| 3 | 2 | anbi1i | |- ( ( x e. ( A \ { (/) } ) /\ ( B e. x /\ ph ) ) <-> ( ( x e. A /\ x =/= (/) ) /\ ( B e. x /\ ph ) ) ) |
| 4 | ne0i | |- ( B e. x -> x =/= (/) ) |
|
| 5 | 4 | pm4.71ri | |- ( B e. x <-> ( x =/= (/) /\ B e. x ) ) |
| 6 | 5 | anbi1i | |- ( ( B e. x /\ ph ) <-> ( ( x =/= (/) /\ B e. x ) /\ ph ) ) |
| 7 | anass | |- ( ( ( x =/= (/) /\ B e. x ) /\ ph ) <-> ( x =/= (/) /\ ( B e. x /\ ph ) ) ) |
|
| 8 | 6 7 | bitri | |- ( ( B e. x /\ ph ) <-> ( x =/= (/) /\ ( B e. x /\ ph ) ) ) |
| 9 | 8 | anbi2i | |- ( ( x e. A /\ ( B e. x /\ ph ) ) <-> ( x e. A /\ ( x =/= (/) /\ ( B e. x /\ ph ) ) ) ) |
| 10 | 1 3 9 | 3bitr4ri | |- ( ( x e. A /\ ( B e. x /\ ph ) ) <-> ( x e. ( A \ { (/) } ) /\ ( B e. x /\ ph ) ) ) |
| 11 | 10 | rexbii2 | |- ( E. x e. A ( B e. x /\ ph ) <-> E. x e. ( A \ { (/) } ) ( B e. x /\ ph ) ) |