This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinality of a set with two distinct elements. (Contributed by Thierry Arnoux, 27-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nehash2.p | ⊢ ( 𝜑 → 𝑃 ∈ 𝑉 ) | |
| nehash2.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) | ||
| nehash2.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) | ||
| nehash2.1 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | ||
| Assertion | nehash2 | ⊢ ( 𝜑 → 2 ≤ ( ♯ ‘ 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nehash2.p | ⊢ ( 𝜑 → 𝑃 ∈ 𝑉 ) | |
| 2 | nehash2.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) | |
| 3 | nehash2.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) | |
| 4 | nehash2.1 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | |
| 5 | hashprg | ⊢ ( ( 𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃 ) → ( 𝐴 ≠ 𝐵 ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) ) | |
| 6 | 2 3 5 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) ) |
| 7 | 4 6 | mpbid | ⊢ ( 𝜑 → ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) |
| 8 | 2 3 | prssd | ⊢ ( 𝜑 → { 𝐴 , 𝐵 } ⊆ 𝑃 ) |
| 9 | hashss | ⊢ ( ( 𝑃 ∈ 𝑉 ∧ { 𝐴 , 𝐵 } ⊆ 𝑃 ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ ( ♯ ‘ 𝑃 ) ) | |
| 10 | 1 8 9 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ ( ♯ ‘ 𝑃 ) ) |
| 11 | 7 10 | eqbrtrrd | ⊢ ( 𝜑 → 2 ≤ ( ♯ ‘ 𝑃 ) ) |