This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017) Remove DV conditions. (Revised by GG, 1-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | prodeq1i.1 | ⊢ 𝐴 = 𝐵 | |
| Assertion | prodeq1i | ⊢ ∏ 𝑘 ∈ 𝐴 𝐶 = ∏ 𝑘 ∈ 𝐵 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodeq1i.1 | ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | sseq1i | ⊢ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ↔ 𝐵 ⊆ ( ℤ≥ ‘ 𝑚 ) ) |
| 3 | 1 | eleq2i | ⊢ ( 𝑘 ∈ 𝐴 ↔ 𝑘 ∈ 𝐵 ) |
| 4 | ifbi | ⊢ ( ( 𝑘 ∈ 𝐴 ↔ 𝑘 ∈ 𝐵 ) → if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) = if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) | |
| 5 | 3 4 | ax-mp | ⊢ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) = if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) |
| 6 | 5 | mpteq2i | ⊢ ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) |
| 7 | seqeq3 | ⊢ ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) → seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) = seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ) ) | |
| 8 | 6 7 | ax-mp | ⊢ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) = seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ) |
| 9 | 8 | breq1i | ⊢ ( seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ↔ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) |
| 10 | 9 | anbi2i | ⊢ ( ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ↔ ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ) |
| 11 | 10 | exbii | ⊢ ( ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ↔ ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ) |
| 12 | 11 | rexbii | ⊢ ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ↔ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ) |
| 13 | seqeq3 | ⊢ ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) → seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) = seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ) ) | |
| 14 | 6 13 | ax-mp | ⊢ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) = seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ) |
| 15 | 14 | breq1i | ⊢ ( seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑥 ↔ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ) ⇝ 𝑥 ) |
| 16 | 2 12 15 | 3anbi123i | ⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑥 ) ↔ ( 𝐵 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ) ⇝ 𝑥 ) ) |
| 17 | 16 | rexbii | ⊢ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑥 ) ↔ ∃ 𝑚 ∈ ℤ ( 𝐵 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ) ⇝ 𝑥 ) ) |
| 18 | f1oeq3 | ⊢ ( 𝐴 = 𝐵 → ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ↔ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐵 ) ) | |
| 19 | 1 18 | ax-mp | ⊢ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ↔ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐵 ) |
| 20 | 19 | anbi1i | ⊢ ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ↔ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐵 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) |
| 21 | 20 | exbii | ⊢ ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐵 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) |
| 22 | 21 | rexbii | ⊢ ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ↔ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐵 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) |
| 23 | 17 22 | orbi12i | ⊢ ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ↔ ( ∃ 𝑚 ∈ ℤ ( 𝐵 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐵 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) |
| 24 | 23 | iotabii | ⊢ ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) = ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐵 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐵 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) |
| 25 | df-prod | ⊢ ∏ 𝑘 ∈ 𝐴 𝐶 = ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) | |
| 26 | df-prod | ⊢ ∏ 𝑘 ∈ 𝐵 𝐶 = ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐵 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐵 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) | |
| 27 | 24 25 26 | 3eqtr4i | ⊢ ∏ 𝑘 ∈ 𝐴 𝐶 = ∏ 𝑘 ∈ 𝐵 𝐶 |