This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two pairs are not equal if their counterparts are not equal. (Contributed by AV, 5-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prneimg2 | ⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) → ( { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } ↔ ( ( 𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷 ) ∧ ( 𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐶 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq12bg | ⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) | |
| 2 | 1 | necon3abid | ⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) → ( { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } ↔ ¬ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| 3 | ioran | ⊢ ( ¬ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ↔ ( ¬ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∧ ¬ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) | |
| 4 | ianor | ⊢ ( ¬ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ↔ ( ¬ 𝐴 = 𝐶 ∨ ¬ 𝐵 = 𝐷 ) ) | |
| 5 | df-ne | ⊢ ( 𝐴 ≠ 𝐶 ↔ ¬ 𝐴 = 𝐶 ) | |
| 6 | df-ne | ⊢ ( 𝐵 ≠ 𝐷 ↔ ¬ 𝐵 = 𝐷 ) | |
| 7 | 5 6 | orbi12i | ⊢ ( ( 𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷 ) ↔ ( ¬ 𝐴 = 𝐶 ∨ ¬ 𝐵 = 𝐷 ) ) |
| 8 | 4 7 | bitr4i | ⊢ ( ¬ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ↔ ( 𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷 ) ) |
| 9 | ianor | ⊢ ( ¬ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ↔ ( ¬ 𝐴 = 𝐷 ∨ ¬ 𝐵 = 𝐶 ) ) | |
| 10 | df-ne | ⊢ ( 𝐴 ≠ 𝐷 ↔ ¬ 𝐴 = 𝐷 ) | |
| 11 | df-ne | ⊢ ( 𝐵 ≠ 𝐶 ↔ ¬ 𝐵 = 𝐶 ) | |
| 12 | 10 11 | orbi12i | ⊢ ( ( 𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐶 ) ↔ ( ¬ 𝐴 = 𝐷 ∨ ¬ 𝐵 = 𝐶 ) ) |
| 13 | 9 12 | bitr4i | ⊢ ( ¬ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ↔ ( 𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐶 ) ) |
| 14 | 8 13 | anbi12i | ⊢ ( ( ¬ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∧ ¬ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ↔ ( ( 𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷 ) ∧ ( 𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐶 ) ) ) |
| 15 | 3 14 | bitri | ⊢ ( ¬ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ↔ ( ( 𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷 ) ∧ ( 𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐶 ) ) ) |
| 16 | 2 15 | bitrdi | ⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) → ( { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } ↔ ( ( 𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷 ) ∧ ( 𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐶 ) ) ) ) |