This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Uniqueness/canonicity of pre . presucmap gives one witness; this theorem gives it is the only one. It turns any predecessor proof into an equality with pre N . (Contributed by Peter Mazsa, 12-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | preuniqval | ⊢ ( 𝑁 ∈ ran SucMap → ∀ 𝑚 ( 𝑚 SucMap 𝑁 → 𝑚 = pre 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | presucmap | ⊢ ( 𝑁 ∈ ran SucMap → pre 𝑁 SucMap 𝑁 ) | |
| 2 | preex | ⊢ pre 𝑁 ∈ V | |
| 3 | sucmapleftuniq | ⊢ ( ( pre 𝑁 ∈ V ∧ 𝑚 ∈ V ∧ 𝑁 ∈ ran SucMap ) → ( ( pre 𝑁 SucMap 𝑁 ∧ 𝑚 SucMap 𝑁 ) → pre 𝑁 = 𝑚 ) ) | |
| 4 | 2 3 | mp3an1 | ⊢ ( ( 𝑚 ∈ V ∧ 𝑁 ∈ ran SucMap ) → ( ( pre 𝑁 SucMap 𝑁 ∧ 𝑚 SucMap 𝑁 ) → pre 𝑁 = 𝑚 ) ) |
| 5 | 4 | el2v1 | ⊢ ( 𝑁 ∈ ran SucMap → ( ( pre 𝑁 SucMap 𝑁 ∧ 𝑚 SucMap 𝑁 ) → pre 𝑁 = 𝑚 ) ) |
| 6 | 1 5 | mpand | ⊢ ( 𝑁 ∈ ran SucMap → ( 𝑚 SucMap 𝑁 → pre 𝑁 = 𝑚 ) ) |
| 7 | eqcom | ⊢ ( pre 𝑁 = 𝑚 ↔ 𝑚 = pre 𝑁 ) | |
| 8 | 6 7 | imbitrdi | ⊢ ( 𝑁 ∈ ran SucMap → ( 𝑚 SucMap 𝑁 → 𝑚 = pre 𝑁 ) ) |
| 9 | 8 | alrimiv | ⊢ ( 𝑁 ∈ ran SucMap → ∀ 𝑚 ( 𝑚 SucMap 𝑁 → 𝑚 = pre 𝑁 ) ) |