This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left uniqueness of the successor mapping. (Contributed by Peter Mazsa, 8-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sucmapleftuniq | ⊢ ( ( 𝐿 ∈ 𝑉 ∧ 𝑀 ∈ 𝑊 ∧ 𝑁 ∈ 𝑋 ) → ( ( 𝐿 SucMap 𝑁 ∧ 𝑀 SucMap 𝑁 ) → 𝐿 = 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsucmap | ⊢ ( ( 𝐿 ∈ 𝑉 ∧ 𝑁 ∈ 𝑋 ) → ( 𝐿 SucMap 𝑁 ↔ suc 𝐿 = 𝑁 ) ) | |
| 2 | brsucmap | ⊢ ( ( 𝑀 ∈ 𝑊 ∧ 𝑁 ∈ 𝑋 ) → ( 𝑀 SucMap 𝑁 ↔ suc 𝑀 = 𝑁 ) ) | |
| 3 | 1 2 | bi2anan9 | ⊢ ( ( ( 𝐿 ∈ 𝑉 ∧ 𝑁 ∈ 𝑋 ) ∧ ( 𝑀 ∈ 𝑊 ∧ 𝑁 ∈ 𝑋 ) ) → ( ( 𝐿 SucMap 𝑁 ∧ 𝑀 SucMap 𝑁 ) ↔ ( suc 𝐿 = 𝑁 ∧ suc 𝑀 = 𝑁 ) ) ) |
| 4 | 3 | 3impdir | ⊢ ( ( 𝐿 ∈ 𝑉 ∧ 𝑀 ∈ 𝑊 ∧ 𝑁 ∈ 𝑋 ) → ( ( 𝐿 SucMap 𝑁 ∧ 𝑀 SucMap 𝑁 ) ↔ ( suc 𝐿 = 𝑁 ∧ suc 𝑀 = 𝑁 ) ) ) |
| 5 | eqtr3 | ⊢ ( ( suc 𝐿 = 𝑁 ∧ suc 𝑀 = 𝑁 ) → suc 𝐿 = suc 𝑀 ) | |
| 6 | 4 5 | biimtrdi | ⊢ ( ( 𝐿 ∈ 𝑉 ∧ 𝑀 ∈ 𝑊 ∧ 𝑁 ∈ 𝑋 ) → ( ( 𝐿 SucMap 𝑁 ∧ 𝑀 SucMap 𝑁 ) → suc 𝐿 = suc 𝑀 ) ) |
| 7 | suc11reg | ⊢ ( suc 𝐿 = suc 𝑀 ↔ 𝐿 = 𝑀 ) | |
| 8 | 6 7 | imbitrdi | ⊢ ( ( 𝐿 ∈ 𝑉 ∧ 𝑀 ∈ 𝑊 ∧ 𝑁 ∈ 𝑋 ) → ( ( 𝐿 SucMap 𝑁 ∧ 𝑀 SucMap 𝑁 ) → 𝐿 = 𝑀 ) ) |