This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Uniqueness/canonicity of pre . presucmap gives one witness; this theorem gives it is the only one. It turns any predecessor proof into an equality with pre N . (Contributed by Peter Mazsa, 12-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | preuniqval | |- ( N e. ran SucMap -> A. m ( m SucMap N -> m = pre N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | presucmap | |- ( N e. ran SucMap -> pre N SucMap N ) |
|
| 2 | preex | |- pre N e. _V |
|
| 3 | sucmapleftuniq | |- ( ( pre N e. _V /\ m e. _V /\ N e. ran SucMap ) -> ( ( pre N SucMap N /\ m SucMap N ) -> pre N = m ) ) |
|
| 4 | 2 3 | mp3an1 | |- ( ( m e. _V /\ N e. ran SucMap ) -> ( ( pre N SucMap N /\ m SucMap N ) -> pre N = m ) ) |
| 5 | 4 | el2v1 | |- ( N e. ran SucMap -> ( ( pre N SucMap N /\ m SucMap N ) -> pre N = m ) ) |
| 6 | 1 5 | mpand | |- ( N e. ran SucMap -> ( m SucMap N -> pre N = m ) ) |
| 7 | eqcom | |- ( pre N = m <-> m = pre N ) |
|
| 8 | 6 7 | imbitrdi | |- ( N e. ran SucMap -> ( m SucMap N -> m = pre N ) ) |
| 9 | 8 | alrimiv | |- ( N e. ran SucMap -> A. m ( m SucMap N -> m = pre N ) ) |