This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: pre is really a predecessor (when it should be). This correctness theorem for pre makes it usable in proofs without unfolding iota . This theorem gives one witness; preuniqval gives it is the only one. (Contributed by Peter Mazsa, 12-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | presucmap | ⊢ ( 𝑁 ∈ ran SucMap → pre 𝑁 SucMap 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfpre2 | ⊢ ( 𝑁 ∈ ran SucMap → pre 𝑁 = ( ℩ 𝑚 𝑚 SucMap 𝑁 ) ) | |
| 2 | 1 | eqcomd | ⊢ ( 𝑁 ∈ ran SucMap → ( ℩ 𝑚 𝑚 SucMap 𝑁 ) = pre 𝑁 ) |
| 3 | preex | ⊢ pre 𝑁 ∈ V | |
| 4 | eupre2 | ⊢ ( 𝑁 ∈ ran SucMap → ( 𝑁 ∈ ran SucMap ↔ ∃! 𝑚 𝑚 SucMap 𝑁 ) ) | |
| 5 | 4 | ibi | ⊢ ( 𝑁 ∈ ran SucMap → ∃! 𝑚 𝑚 SucMap 𝑁 ) |
| 6 | breq1 | ⊢ ( 𝑚 = pre 𝑁 → ( 𝑚 SucMap 𝑁 ↔ pre 𝑁 SucMap 𝑁 ) ) | |
| 7 | 6 | iota2 | ⊢ ( ( pre 𝑁 ∈ V ∧ ∃! 𝑚 𝑚 SucMap 𝑁 ) → ( pre 𝑁 SucMap 𝑁 ↔ ( ℩ 𝑚 𝑚 SucMap 𝑁 ) = pre 𝑁 ) ) |
| 8 | 3 5 7 | sylancr | ⊢ ( 𝑁 ∈ ran SucMap → ( pre 𝑁 SucMap 𝑁 ↔ ( ℩ 𝑚 𝑚 SucMap 𝑁 ) = pre 𝑁 ) ) |
| 9 | 2 8 | mpbird | ⊢ ( 𝑁 ∈ ran SucMap → pre 𝑁 SucMap 𝑁 ) |