This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: pre is really a predecessor (when it should be). This correctness theorem for pre makes it usable in proofs without unfolding iota . This theorem gives one witness; preuniqval gives it is the only one. (Contributed by Peter Mazsa, 12-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | presucmap | |- ( N e. ran SucMap -> pre N SucMap N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfpre2 | |- ( N e. ran SucMap -> pre N = ( iota m m SucMap N ) ) |
|
| 2 | 1 | eqcomd | |- ( N e. ran SucMap -> ( iota m m SucMap N ) = pre N ) |
| 3 | preex | |- pre N e. _V |
|
| 4 | eupre2 | |- ( N e. ran SucMap -> ( N e. ran SucMap <-> E! m m SucMap N ) ) |
|
| 5 | 4 | ibi | |- ( N e. ran SucMap -> E! m m SucMap N ) |
| 6 | breq1 | |- ( m = pre N -> ( m SucMap N <-> pre N SucMap N ) ) |
|
| 7 | 6 | iota2 | |- ( ( pre N e. _V /\ E! m m SucMap N ) -> ( pre N SucMap N <-> ( iota m m SucMap N ) = pre N ) ) |
| 8 | 3 5 7 | sylancr | |- ( N e. ran SucMap -> ( pre N SucMap N <-> ( iota m m SucMap N ) = pre N ) ) |
| 9 | 2 8 | mpbird | |- ( N e. ran SucMap -> pre N SucMap N ) |