This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product metric is an extended metric. Eliminate disjoint variable conditions from prdsxmetlem . (Contributed by Mario Carneiro, 26-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsdsf.y | |- Y = ( S Xs_ ( x e. I |-> R ) ) |
|
| prdsdsf.b | |- B = ( Base ` Y ) |
||
| prdsdsf.v | |- V = ( Base ` R ) |
||
| prdsdsf.e | |- E = ( ( dist ` R ) |` ( V X. V ) ) |
||
| prdsdsf.d | |- D = ( dist ` Y ) |
||
| prdsdsf.s | |- ( ph -> S e. W ) |
||
| prdsdsf.i | |- ( ph -> I e. X ) |
||
| prdsdsf.r | |- ( ( ph /\ x e. I ) -> R e. Z ) |
||
| prdsdsf.m | |- ( ( ph /\ x e. I ) -> E e. ( *Met ` V ) ) |
||
| Assertion | prdsxmet | |- ( ph -> D e. ( *Met ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsdsf.y | |- Y = ( S Xs_ ( x e. I |-> R ) ) |
|
| 2 | prdsdsf.b | |- B = ( Base ` Y ) |
|
| 3 | prdsdsf.v | |- V = ( Base ` R ) |
|
| 4 | prdsdsf.e | |- E = ( ( dist ` R ) |` ( V X. V ) ) |
|
| 5 | prdsdsf.d | |- D = ( dist ` Y ) |
|
| 6 | prdsdsf.s | |- ( ph -> S e. W ) |
|
| 7 | prdsdsf.i | |- ( ph -> I e. X ) |
|
| 8 | prdsdsf.r | |- ( ( ph /\ x e. I ) -> R e. Z ) |
|
| 9 | prdsdsf.m | |- ( ( ph /\ x e. I ) -> E e. ( *Met ` V ) ) |
|
| 10 | nfcv | |- F/_ y R |
|
| 11 | nfcsb1v | |- F/_ x [_ y / x ]_ R |
|
| 12 | csbeq1a | |- ( x = y -> R = [_ y / x ]_ R ) |
|
| 13 | 10 11 12 | cbvmpt | |- ( x e. I |-> R ) = ( y e. I |-> [_ y / x ]_ R ) |
| 14 | 13 | oveq2i | |- ( S Xs_ ( x e. I |-> R ) ) = ( S Xs_ ( y e. I |-> [_ y / x ]_ R ) ) |
| 15 | 1 14 | eqtri | |- Y = ( S Xs_ ( y e. I |-> [_ y / x ]_ R ) ) |
| 16 | eqid | |- ( Base ` [_ y / x ]_ R ) = ( Base ` [_ y / x ]_ R ) |
|
| 17 | eqid | |- ( ( dist ` [_ y / x ]_ R ) |` ( ( Base ` [_ y / x ]_ R ) X. ( Base ` [_ y / x ]_ R ) ) ) = ( ( dist ` [_ y / x ]_ R ) |` ( ( Base ` [_ y / x ]_ R ) X. ( Base ` [_ y / x ]_ R ) ) ) |
|
| 18 | 8 | elexd | |- ( ( ph /\ x e. I ) -> R e. _V ) |
| 19 | 18 | ralrimiva | |- ( ph -> A. x e. I R e. _V ) |
| 20 | 11 | nfel1 | |- F/ x [_ y / x ]_ R e. _V |
| 21 | 12 | eleq1d | |- ( x = y -> ( R e. _V <-> [_ y / x ]_ R e. _V ) ) |
| 22 | 20 21 | rspc | |- ( y e. I -> ( A. x e. I R e. _V -> [_ y / x ]_ R e. _V ) ) |
| 23 | 19 22 | mpan9 | |- ( ( ph /\ y e. I ) -> [_ y / x ]_ R e. _V ) |
| 24 | 9 | ralrimiva | |- ( ph -> A. x e. I E e. ( *Met ` V ) ) |
| 25 | nfcv | |- F/_ x dist |
|
| 26 | 25 11 | nffv | |- F/_ x ( dist ` [_ y / x ]_ R ) |
| 27 | nfcv | |- F/_ x Base |
|
| 28 | 27 11 | nffv | |- F/_ x ( Base ` [_ y / x ]_ R ) |
| 29 | 28 28 | nfxp | |- F/_ x ( ( Base ` [_ y / x ]_ R ) X. ( Base ` [_ y / x ]_ R ) ) |
| 30 | 26 29 | nfres | |- F/_ x ( ( dist ` [_ y / x ]_ R ) |` ( ( Base ` [_ y / x ]_ R ) X. ( Base ` [_ y / x ]_ R ) ) ) |
| 31 | nfcv | |- F/_ x *Met |
|
| 32 | 31 28 | nffv | |- F/_ x ( *Met ` ( Base ` [_ y / x ]_ R ) ) |
| 33 | 30 32 | nfel | |- F/ x ( ( dist ` [_ y / x ]_ R ) |` ( ( Base ` [_ y / x ]_ R ) X. ( Base ` [_ y / x ]_ R ) ) ) e. ( *Met ` ( Base ` [_ y / x ]_ R ) ) |
| 34 | 12 | fveq2d | |- ( x = y -> ( dist ` R ) = ( dist ` [_ y / x ]_ R ) ) |
| 35 | 12 | fveq2d | |- ( x = y -> ( Base ` R ) = ( Base ` [_ y / x ]_ R ) ) |
| 36 | 3 35 | eqtrid | |- ( x = y -> V = ( Base ` [_ y / x ]_ R ) ) |
| 37 | 36 | sqxpeqd | |- ( x = y -> ( V X. V ) = ( ( Base ` [_ y / x ]_ R ) X. ( Base ` [_ y / x ]_ R ) ) ) |
| 38 | 34 37 | reseq12d | |- ( x = y -> ( ( dist ` R ) |` ( V X. V ) ) = ( ( dist ` [_ y / x ]_ R ) |` ( ( Base ` [_ y / x ]_ R ) X. ( Base ` [_ y / x ]_ R ) ) ) ) |
| 39 | 4 38 | eqtrid | |- ( x = y -> E = ( ( dist ` [_ y / x ]_ R ) |` ( ( Base ` [_ y / x ]_ R ) X. ( Base ` [_ y / x ]_ R ) ) ) ) |
| 40 | 36 | fveq2d | |- ( x = y -> ( *Met ` V ) = ( *Met ` ( Base ` [_ y / x ]_ R ) ) ) |
| 41 | 39 40 | eleq12d | |- ( x = y -> ( E e. ( *Met ` V ) <-> ( ( dist ` [_ y / x ]_ R ) |` ( ( Base ` [_ y / x ]_ R ) X. ( Base ` [_ y / x ]_ R ) ) ) e. ( *Met ` ( Base ` [_ y / x ]_ R ) ) ) ) |
| 42 | 33 41 | rspc | |- ( y e. I -> ( A. x e. I E e. ( *Met ` V ) -> ( ( dist ` [_ y / x ]_ R ) |` ( ( Base ` [_ y / x ]_ R ) X. ( Base ` [_ y / x ]_ R ) ) ) e. ( *Met ` ( Base ` [_ y / x ]_ R ) ) ) ) |
| 43 | 24 42 | mpan9 | |- ( ( ph /\ y e. I ) -> ( ( dist ` [_ y / x ]_ R ) |` ( ( Base ` [_ y / x ]_ R ) X. ( Base ` [_ y / x ]_ R ) ) ) e. ( *Met ` ( Base ` [_ y / x ]_ R ) ) ) |
| 44 | 15 2 16 17 5 6 7 23 43 | prdsxmetlem | |- ( ph -> D e. ( *Met ` B ) ) |