This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication in a structure product. (Contributed by Stefan O'Rear, 5-Jan-2015) (Revised by Mario Carneiro, 15-Aug-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by Zhi Wang, 18-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsbas.p | ⊢ 𝑃 = ( 𝑆 Xs 𝑅 ) | |
| prdsbas.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| prdsbas.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) | ||
| prdsbas.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| prdsbas.i | ⊢ ( 𝜑 → dom 𝑅 = 𝐼 ) | ||
| prdsvsca.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| prdsvsca.m | ⊢ · = ( ·𝑠 ‘ 𝑃 ) | ||
| Assertion | prdsvsca | ⊢ ( 𝜑 → · = ( 𝑓 ∈ 𝐾 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbas.p | ⊢ 𝑃 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prdsbas.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 3 | prdsbas.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) | |
| 4 | prdsbas.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 5 | prdsbas.i | ⊢ ( 𝜑 → dom 𝑅 = 𝐼 ) | |
| 6 | prdsvsca.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 7 | prdsvsca.m | ⊢ · = ( ·𝑠 ‘ 𝑃 ) | |
| 8 | 1 2 3 4 5 | prdsbas | ⊢ ( 𝜑 → 𝐵 = X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 9 | eqid | ⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) | |
| 10 | 1 2 3 4 5 9 | prdsplusg | ⊢ ( 𝜑 → ( +g ‘ 𝑃 ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 11 | eqid | ⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) | |
| 12 | 1 2 3 4 5 11 | prdsmulr | ⊢ ( 𝜑 → ( .r ‘ 𝑃 ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 13 | eqidd | ⊢ ( 𝜑 → ( 𝑓 ∈ 𝐾 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = ( 𝑓 ∈ 𝐾 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) | |
| 14 | eqidd | ⊢ ( 𝜑 → ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) | |
| 15 | eqidd | ⊢ ( 𝜑 → ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ) | |
| 16 | eqidd | ⊢ ( 𝜑 → { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } = { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ) | |
| 17 | eqidd | ⊢ ( 𝜑 → ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) ) | |
| 18 | eqidd | ⊢ ( 𝜑 → ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) | |
| 19 | eqidd | ⊢ ( 𝜑 → ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐 ∈ 𝐵 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) = ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐 ∈ 𝐵 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) ) | |
| 20 | 1 6 5 8 10 12 13 14 15 16 17 18 19 2 3 | prdsval | ⊢ ( 𝜑 → 𝑃 = ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑃 ) 〉 , 〈 ( .r ‘ ndx ) , ( .r ‘ 𝑃 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ 𝐾 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐 ∈ 𝐵 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) ) |
| 21 | vscaid | ⊢ ·𝑠 = Slot ( ·𝑠 ‘ ndx ) | |
| 22 | ovssunirn | ⊢ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ⊆ ∪ ran ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) | |
| 23 | 21 | strfvss | ⊢ ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ⊆ ∪ ran ( 𝑅 ‘ 𝑥 ) |
| 24 | fvssunirn | ⊢ ( 𝑅 ‘ 𝑥 ) ⊆ ∪ ran 𝑅 | |
| 25 | rnss | ⊢ ( ( 𝑅 ‘ 𝑥 ) ⊆ ∪ ran 𝑅 → ran ( 𝑅 ‘ 𝑥 ) ⊆ ran ∪ ran 𝑅 ) | |
| 26 | uniss | ⊢ ( ran ( 𝑅 ‘ 𝑥 ) ⊆ ran ∪ ran 𝑅 → ∪ ran ( 𝑅 ‘ 𝑥 ) ⊆ ∪ ran ∪ ran 𝑅 ) | |
| 27 | 24 25 26 | mp2b | ⊢ ∪ ran ( 𝑅 ‘ 𝑥 ) ⊆ ∪ ran ∪ ran 𝑅 |
| 28 | 23 27 | sstri | ⊢ ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ⊆ ∪ ran ∪ ran 𝑅 |
| 29 | rnss | ⊢ ( ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ⊆ ∪ ran ∪ ran 𝑅 → ran ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ⊆ ran ∪ ran ∪ ran 𝑅 ) | |
| 30 | uniss | ⊢ ( ran ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ⊆ ran ∪ ran ∪ ran 𝑅 → ∪ ran ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ⊆ ∪ ran ∪ ran ∪ ran 𝑅 ) | |
| 31 | 28 29 30 | mp2b | ⊢ ∪ ran ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ⊆ ∪ ran ∪ ran ∪ ran 𝑅 |
| 32 | 22 31 | sstri | ⊢ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ⊆ ∪ ran ∪ ran ∪ ran 𝑅 |
| 33 | ovex | ⊢ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ∈ V | |
| 34 | 33 | elpw | ⊢ ( ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ∈ 𝒫 ∪ ran ∪ ran ∪ ran 𝑅 ↔ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ⊆ ∪ ran ∪ ran ∪ ran 𝑅 ) |
| 35 | 32 34 | mpbir | ⊢ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ∈ 𝒫 ∪ ran ∪ ran ∪ ran 𝑅 |
| 36 | 35 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ∈ 𝒫 ∪ ran ∪ ran ∪ ran 𝑅 ) |
| 37 | 36 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) : 𝐼 ⟶ 𝒫 ∪ ran ∪ ran ∪ ran 𝑅 ) |
| 38 | rnexg | ⊢ ( 𝑅 ∈ 𝑊 → ran 𝑅 ∈ V ) | |
| 39 | uniexg | ⊢ ( ran 𝑅 ∈ V → ∪ ran 𝑅 ∈ V ) | |
| 40 | 3 38 39 | 3syl | ⊢ ( 𝜑 → ∪ ran 𝑅 ∈ V ) |
| 41 | rnexg | ⊢ ( ∪ ran 𝑅 ∈ V → ran ∪ ran 𝑅 ∈ V ) | |
| 42 | uniexg | ⊢ ( ran ∪ ran 𝑅 ∈ V → ∪ ran ∪ ran 𝑅 ∈ V ) | |
| 43 | 40 41 42 | 3syl | ⊢ ( 𝜑 → ∪ ran ∪ ran 𝑅 ∈ V ) |
| 44 | rnexg | ⊢ ( ∪ ran ∪ ran 𝑅 ∈ V → ran ∪ ran ∪ ran 𝑅 ∈ V ) | |
| 45 | uniexg | ⊢ ( ran ∪ ran ∪ ran 𝑅 ∈ V → ∪ ran ∪ ran ∪ ran 𝑅 ∈ V ) | |
| 46 | pwexg | ⊢ ( ∪ ran ∪ ran ∪ ran 𝑅 ∈ V → 𝒫 ∪ ran ∪ ran ∪ ran 𝑅 ∈ V ) | |
| 47 | 43 44 45 46 | 4syl | ⊢ ( 𝜑 → 𝒫 ∪ ran ∪ ran ∪ ran 𝑅 ∈ V ) |
| 48 | 3 | dmexd | ⊢ ( 𝜑 → dom 𝑅 ∈ V ) |
| 49 | 5 48 | eqeltrrd | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 50 | 47 49 | elmapd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∈ ( 𝒫 ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼 ) ↔ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) : 𝐼 ⟶ 𝒫 ∪ ran ∪ ran ∪ ran 𝑅 ) ) |
| 51 | 37 50 | mpbird | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∈ ( 𝒫 ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼 ) ) |
| 52 | 51 | ralrimivw | ⊢ ( 𝜑 → ∀ 𝑔 ∈ 𝐵 ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∈ ( 𝒫 ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼 ) ) |
| 53 | 52 | ralrimivw | ⊢ ( 𝜑 → ∀ 𝑓 ∈ 𝐾 ∀ 𝑔 ∈ 𝐵 ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∈ ( 𝒫 ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼 ) ) |
| 54 | eqid | ⊢ ( 𝑓 ∈ 𝐾 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = ( 𝑓 ∈ 𝐾 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) | |
| 55 | 54 | fmpo | ⊢ ( ∀ 𝑓 ∈ 𝐾 ∀ 𝑔 ∈ 𝐵 ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∈ ( 𝒫 ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼 ) ↔ ( 𝑓 ∈ 𝐾 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) : ( 𝐾 × 𝐵 ) ⟶ ( 𝒫 ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼 ) ) |
| 56 | 53 55 | sylib | ⊢ ( 𝜑 → ( 𝑓 ∈ 𝐾 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) : ( 𝐾 × 𝐵 ) ⟶ ( 𝒫 ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼 ) ) |
| 57 | 6 | fvexi | ⊢ 𝐾 ∈ V |
| 58 | 4 | fvexi | ⊢ 𝐵 ∈ V |
| 59 | 57 58 | xpex | ⊢ ( 𝐾 × 𝐵 ) ∈ V |
| 60 | ovex | ⊢ ( 𝒫 ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼 ) ∈ V | |
| 61 | fex2 | ⊢ ( ( ( 𝑓 ∈ 𝐾 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) : ( 𝐾 × 𝐵 ) ⟶ ( 𝒫 ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼 ) ∧ ( 𝐾 × 𝐵 ) ∈ V ∧ ( 𝒫 ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼 ) ∈ V ) → ( 𝑓 ∈ 𝐾 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ∈ V ) | |
| 62 | 59 60 61 | mp3an23 | ⊢ ( ( 𝑓 ∈ 𝐾 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) : ( 𝐾 × 𝐵 ) ⟶ ( 𝒫 ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼 ) → ( 𝑓 ∈ 𝐾 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ∈ V ) |
| 63 | 56 62 | syl | ⊢ ( 𝜑 → ( 𝑓 ∈ 𝐾 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ∈ V ) |
| 64 | snsstp2 | ⊢ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ 𝐾 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ⊆ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ 𝐾 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } | |
| 65 | ssun2 | ⊢ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ 𝐾 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ⊆ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑃 ) 〉 , 〈 ( .r ‘ ndx ) , ( .r ‘ 𝑃 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ 𝐾 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) | |
| 66 | 64 65 | sstri | ⊢ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ 𝐾 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ⊆ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑃 ) 〉 , 〈 ( .r ‘ ndx ) , ( .r ‘ 𝑃 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ 𝐾 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) |
| 67 | ssun1 | ⊢ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑃 ) 〉 , 〈 ( .r ‘ ndx ) , ( .r ‘ 𝑃 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ 𝐾 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ⊆ ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑃 ) 〉 , 〈 ( .r ‘ ndx ) , ( .r ‘ 𝑃 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ 𝐾 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐 ∈ 𝐵 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) | |
| 68 | 66 67 | sstri | ⊢ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ 𝐾 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ⊆ ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑃 ) 〉 , 〈 ( .r ‘ ndx ) , ( .r ‘ 𝑃 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ 𝐾 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐 ∈ 𝐵 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) |
| 69 | 20 7 21 63 68 | prdsbaslem | ⊢ ( 𝜑 → · = ( 𝑓 ∈ 𝐾 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |