This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An unordered pair has at most two elements. (Contributed by FL, 22-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prdom2 | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → { 𝐴 , 𝐵 } ≼ 2o ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 | ⊢ { 𝐴 } = { 𝐴 , 𝐴 } | |
| 2 | ensn1g | ⊢ ( 𝐴 ∈ 𝐶 → { 𝐴 } ≈ 1o ) | |
| 3 | endom | ⊢ ( { 𝐴 } ≈ 1o → { 𝐴 } ≼ 1o ) | |
| 4 | 1sdom2 | ⊢ 1o ≺ 2o | |
| 5 | domsdomtr | ⊢ ( ( { 𝐴 } ≼ 1o ∧ 1o ≺ 2o ) → { 𝐴 } ≺ 2o ) | |
| 6 | sdomdom | ⊢ ( { 𝐴 } ≺ 2o → { 𝐴 } ≼ 2o ) | |
| 7 | 5 6 | syl | ⊢ ( ( { 𝐴 } ≼ 1o ∧ 1o ≺ 2o ) → { 𝐴 } ≼ 2o ) |
| 8 | 3 4 7 | sylancl | ⊢ ( { 𝐴 } ≈ 1o → { 𝐴 } ≼ 2o ) |
| 9 | 2 8 | syl | ⊢ ( 𝐴 ∈ 𝐶 → { 𝐴 } ≼ 2o ) |
| 10 | 1 9 | eqbrtrrid | ⊢ ( 𝐴 ∈ 𝐶 → { 𝐴 , 𝐴 } ≼ 2o ) |
| 11 | preq2 | ⊢ ( 𝐵 = 𝐴 → { 𝐴 , 𝐵 } = { 𝐴 , 𝐴 } ) | |
| 12 | 11 | breq1d | ⊢ ( 𝐵 = 𝐴 → ( { 𝐴 , 𝐵 } ≼ 2o ↔ { 𝐴 , 𝐴 } ≼ 2o ) ) |
| 13 | 10 12 | imbitrrid | ⊢ ( 𝐵 = 𝐴 → ( 𝐴 ∈ 𝐶 → { 𝐴 , 𝐵 } ≼ 2o ) ) |
| 14 | 13 | eqcoms | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∈ 𝐶 → { 𝐴 , 𝐵 } ≼ 2o ) ) |
| 15 | 14 | adantrd | ⊢ ( 𝐴 = 𝐵 → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → { 𝐴 , 𝐵 } ≼ 2o ) ) |
| 16 | pr2ne | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( { 𝐴 , 𝐵 } ≈ 2o ↔ 𝐴 ≠ 𝐵 ) ) | |
| 17 | 16 | biimprd | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐴 ≠ 𝐵 → { 𝐴 , 𝐵 } ≈ 2o ) ) |
| 18 | endom | ⊢ ( { 𝐴 , 𝐵 } ≈ 2o → { 𝐴 , 𝐵 } ≼ 2o ) | |
| 19 | 17 18 | syl6com | ⊢ ( 𝐴 ≠ 𝐵 → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → { 𝐴 , 𝐵 } ≼ 2o ) ) |
| 20 | 15 19 | pm2.61ine | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → { 𝐴 , 𝐵 } ≼ 2o ) |