This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An unordered pair has at most two elements. (Contributed by FL, 22-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prdom2 | |- ( ( A e. C /\ B e. D ) -> { A , B } ~<_ 2o ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 | |- { A } = { A , A } |
|
| 2 | ensn1g | |- ( A e. C -> { A } ~~ 1o ) |
|
| 3 | endom | |- ( { A } ~~ 1o -> { A } ~<_ 1o ) |
|
| 4 | 1sdom2 | |- 1o ~< 2o |
|
| 5 | domsdomtr | |- ( ( { A } ~<_ 1o /\ 1o ~< 2o ) -> { A } ~< 2o ) |
|
| 6 | sdomdom | |- ( { A } ~< 2o -> { A } ~<_ 2o ) |
|
| 7 | 5 6 | syl | |- ( ( { A } ~<_ 1o /\ 1o ~< 2o ) -> { A } ~<_ 2o ) |
| 8 | 3 4 7 | sylancl | |- ( { A } ~~ 1o -> { A } ~<_ 2o ) |
| 9 | 2 8 | syl | |- ( A e. C -> { A } ~<_ 2o ) |
| 10 | 1 9 | eqbrtrrid | |- ( A e. C -> { A , A } ~<_ 2o ) |
| 11 | preq2 | |- ( B = A -> { A , B } = { A , A } ) |
|
| 12 | 11 | breq1d | |- ( B = A -> ( { A , B } ~<_ 2o <-> { A , A } ~<_ 2o ) ) |
| 13 | 10 12 | imbitrrid | |- ( B = A -> ( A e. C -> { A , B } ~<_ 2o ) ) |
| 14 | 13 | eqcoms | |- ( A = B -> ( A e. C -> { A , B } ~<_ 2o ) ) |
| 15 | 14 | adantrd | |- ( A = B -> ( ( A e. C /\ B e. D ) -> { A , B } ~<_ 2o ) ) |
| 16 | pr2ne | |- ( ( A e. C /\ B e. D ) -> ( { A , B } ~~ 2o <-> A =/= B ) ) |
|
| 17 | 16 | biimprd | |- ( ( A e. C /\ B e. D ) -> ( A =/= B -> { A , B } ~~ 2o ) ) |
| 18 | endom | |- ( { A , B } ~~ 2o -> { A , B } ~<_ 2o ) |
|
| 19 | 17 18 | syl6com | |- ( A =/= B -> ( ( A e. C /\ B e. D ) -> { A , B } ~<_ 2o ) ) |
| 20 | 15 19 | pm2.61ine | |- ( ( A e. C /\ B e. D ) -> { A , B } ~<_ 2o ) |