This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the prime-counting function pi. (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ppival2g | |- ( ( A e. ZZ /\ 2 e. ( ZZ>= ` M ) ) -> ( ppi ` A ) = ( # ` ( ( M ... A ) i^i Prime ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | |- ( A e. ZZ -> A e. RR ) |
|
| 2 | 1 | adantr | |- ( ( A e. ZZ /\ 2 e. ( ZZ>= ` M ) ) -> A e. RR ) |
| 3 | ppival | |- ( A e. RR -> ( ppi ` A ) = ( # ` ( ( 0 [,] A ) i^i Prime ) ) ) |
|
| 4 | 2 3 | syl | |- ( ( A e. ZZ /\ 2 e. ( ZZ>= ` M ) ) -> ( ppi ` A ) = ( # ` ( ( 0 [,] A ) i^i Prime ) ) ) |
| 5 | ppisval2 | |- ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) -> ( ( 0 [,] A ) i^i Prime ) = ( ( M ... ( |_ ` A ) ) i^i Prime ) ) |
|
| 6 | 1 5 | sylan | |- ( ( A e. ZZ /\ 2 e. ( ZZ>= ` M ) ) -> ( ( 0 [,] A ) i^i Prime ) = ( ( M ... ( |_ ` A ) ) i^i Prime ) ) |
| 7 | flid | |- ( A e. ZZ -> ( |_ ` A ) = A ) |
|
| 8 | 7 | oveq2d | |- ( A e. ZZ -> ( M ... ( |_ ` A ) ) = ( M ... A ) ) |
| 9 | 8 | ineq1d | |- ( A e. ZZ -> ( ( M ... ( |_ ` A ) ) i^i Prime ) = ( ( M ... A ) i^i Prime ) ) |
| 10 | 9 | adantr | |- ( ( A e. ZZ /\ 2 e. ( ZZ>= ` M ) ) -> ( ( M ... ( |_ ` A ) ) i^i Prime ) = ( ( M ... A ) i^i Prime ) ) |
| 11 | 6 10 | eqtrd | |- ( ( A e. ZZ /\ 2 e. ( ZZ>= ` M ) ) -> ( ( 0 [,] A ) i^i Prime ) = ( ( M ... A ) i^i Prime ) ) |
| 12 | 11 | fveq2d | |- ( ( A e. ZZ /\ 2 e. ( ZZ>= ` M ) ) -> ( # ` ( ( 0 [,] A ) i^i Prime ) ) = ( # ` ( ( M ... A ) i^i Prime ) ) ) |
| 13 | 4 12 | eqtrd | |- ( ( A e. ZZ /\ 2 e. ( ZZ>= ` M ) ) -> ( ppi ` A ) = ( # ` ( ( M ... A ) i^i Prime ) ) ) |