This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Greatest lower bounds in a poset are unique if they exist. (Contributed by NM, 20-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | poslubmo.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| poslubmo.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | ||
| Assertion | posglbmo | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) → ∃* 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poslubmo.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 2 | poslubmo.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 3 | simprrl | ⊢ ( ( ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) ) → ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ) | |
| 4 | breq1 | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 ≤ 𝑦 ↔ 𝑤 ≤ 𝑦 ) ) | |
| 5 | 4 | ralbidv | ⊢ ( 𝑧 = 𝑤 → ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 ↔ ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ) ) |
| 6 | breq1 | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 ≤ 𝑥 ↔ 𝑤 ≤ 𝑥 ) ) | |
| 7 | 5 6 | imbi12d | ⊢ ( 𝑧 = 𝑤 → ( ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 → 𝑤 ≤ 𝑥 ) ) ) |
| 8 | simprlr | ⊢ ( ( ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) ) → ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) | |
| 9 | simplrr | ⊢ ( ( ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) ) → 𝑤 ∈ 𝐵 ) | |
| 10 | 7 8 9 | rspcdva | ⊢ ( ( ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) ) → ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 → 𝑤 ≤ 𝑥 ) ) |
| 11 | 3 10 | mpd | ⊢ ( ( ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) ) → 𝑤 ≤ 𝑥 ) |
| 12 | simprll | ⊢ ( ( ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) ) → ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) | |
| 13 | breq1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 ≤ 𝑦 ↔ 𝑥 ≤ 𝑦 ) ) | |
| 14 | 13 | ralbidv | ⊢ ( 𝑧 = 𝑥 → ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 ↔ ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ) |
| 15 | breq1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 ≤ 𝑤 ↔ 𝑥 ≤ 𝑤 ) ) | |
| 16 | 14 15 | imbi12d | ⊢ ( 𝑧 = 𝑥 → ( ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝑤 ) ) ) |
| 17 | simprrr | ⊢ ( ( ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) ) → ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) | |
| 18 | simplrl | ⊢ ( ( ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) ) → 𝑥 ∈ 𝐵 ) | |
| 19 | 16 17 18 | rspcdva | ⊢ ( ( ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) ) → ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝑤 ) ) |
| 20 | 12 19 | mpd | ⊢ ( ( ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) ) → 𝑥 ≤ 𝑤 ) |
| 21 | ancom | ⊢ ( ( 𝑤 ≤ 𝑥 ∧ 𝑥 ≤ 𝑤 ) ↔ ( 𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥 ) ) | |
| 22 | 2 1 | posasymb | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥 ) ↔ 𝑥 = 𝑤 ) ) |
| 23 | 21 22 | bitrid | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝑤 ≤ 𝑥 ∧ 𝑥 ≤ 𝑤 ) ↔ 𝑥 = 𝑤 ) ) |
| 24 | 23 | 3expb | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑤 ≤ 𝑥 ∧ 𝑥 ≤ 𝑤 ) ↔ 𝑥 = 𝑤 ) ) |
| 25 | 24 | ad4ant13 | ⊢ ( ( ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) ) → ( ( 𝑤 ≤ 𝑥 ∧ 𝑥 ≤ 𝑤 ) ↔ 𝑥 = 𝑤 ) ) |
| 26 | 11 20 25 | mpbi2and | ⊢ ( ( ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) ) → 𝑥 = 𝑤 ) |
| 27 | 26 | ex | ⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) → 𝑥 = 𝑤 ) ) |
| 28 | 27 | ralrimivva | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) → 𝑥 = 𝑤 ) ) |
| 29 | breq1 | ⊢ ( 𝑥 = 𝑤 → ( 𝑥 ≤ 𝑦 ↔ 𝑤 ≤ 𝑦 ) ) | |
| 30 | 29 | ralbidv | ⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ↔ ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ) ) |
| 31 | breq2 | ⊢ ( 𝑥 = 𝑤 → ( 𝑧 ≤ 𝑥 ↔ 𝑧 ≤ 𝑤 ) ) | |
| 32 | 31 | imbi2d | ⊢ ( 𝑥 = 𝑤 → ( ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) |
| 33 | 32 | ralbidv | ⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ↔ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) |
| 34 | 30 33 | anbi12d | ⊢ ( 𝑥 = 𝑤 → ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) ) |
| 35 | 34 | rmo4 | ⊢ ( ∃* 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) → 𝑥 = 𝑤 ) ) |
| 36 | 28 35 | sylibr | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) → ∃* 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) |