This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitive law for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | poltletr | ⊢ ( ( 𝑅 Po 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 ( 𝑅 ∪ I ) 𝐶 ) → 𝐴 𝑅 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poleloe | ⊢ ( 𝐶 ∈ 𝑋 → ( 𝐵 ( 𝑅 ∪ I ) 𝐶 ↔ ( 𝐵 𝑅 𝐶 ∨ 𝐵 = 𝐶 ) ) ) | |
| 2 | 1 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 ( 𝑅 ∪ I ) 𝐶 ↔ ( 𝐵 𝑅 𝐶 ∨ 𝐵 = 𝐶 ) ) ) |
| 3 | 2 | adantl | ⊢ ( ( 𝑅 Po 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 ( 𝑅 ∪ I ) 𝐶 ↔ ( 𝐵 𝑅 𝐶 ∨ 𝐵 = 𝐶 ) ) ) |
| 4 | 3 | anbi2d | ⊢ ( ( 𝑅 Po 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 ( 𝑅 ∪ I ) 𝐶 ) ↔ ( 𝐴 𝑅 𝐵 ∧ ( 𝐵 𝑅 𝐶 ∨ 𝐵 = 𝐶 ) ) ) ) |
| 5 | potr | ⊢ ( ( 𝑅 Po 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ) | |
| 6 | 5 | com12 | ⊢ ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → ( ( 𝑅 Po 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐴 𝑅 𝐶 ) ) |
| 7 | breq2 | ⊢ ( 𝐵 = 𝐶 → ( 𝐴 𝑅 𝐵 ↔ 𝐴 𝑅 𝐶 ) ) | |
| 8 | 7 | biimpac | ⊢ ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 = 𝐶 ) → 𝐴 𝑅 𝐶 ) |
| 9 | 8 | a1d | ⊢ ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 = 𝐶 ) → ( ( 𝑅 Po 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐴 𝑅 𝐶 ) ) |
| 10 | 6 9 | jaodan | ⊢ ( ( 𝐴 𝑅 𝐵 ∧ ( 𝐵 𝑅 𝐶 ∨ 𝐵 = 𝐶 ) ) → ( ( 𝑅 Po 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐴 𝑅 𝐶 ) ) |
| 11 | 10 | com12 | ⊢ ( ( 𝑅 Po 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝑅 𝐵 ∧ ( 𝐵 𝑅 𝐶 ∨ 𝐵 = 𝐶 ) ) → 𝐴 𝑅 𝐶 ) ) |
| 12 | 4 11 | sylbid | ⊢ ( ( 𝑅 Po 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 ( 𝑅 ∪ I ) 𝐶 ) → 𝐴 𝑅 𝐶 ) ) |