This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitive law for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | poltletr | |- ( ( R Po X /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A R B /\ B ( R u. _I ) C ) -> A R C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poleloe | |- ( C e. X -> ( B ( R u. _I ) C <-> ( B R C \/ B = C ) ) ) |
|
| 2 | 1 | 3ad2ant3 | |- ( ( A e. X /\ B e. X /\ C e. X ) -> ( B ( R u. _I ) C <-> ( B R C \/ B = C ) ) ) |
| 3 | 2 | adantl | |- ( ( R Po X /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B ( R u. _I ) C <-> ( B R C \/ B = C ) ) ) |
| 4 | 3 | anbi2d | |- ( ( R Po X /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A R B /\ B ( R u. _I ) C ) <-> ( A R B /\ ( B R C \/ B = C ) ) ) ) |
| 5 | potr | |- ( ( R Po X /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A R B /\ B R C ) -> A R C ) ) |
|
| 6 | 5 | com12 | |- ( ( A R B /\ B R C ) -> ( ( R Po X /\ ( A e. X /\ B e. X /\ C e. X ) ) -> A R C ) ) |
| 7 | breq2 | |- ( B = C -> ( A R B <-> A R C ) ) |
|
| 8 | 7 | biimpac | |- ( ( A R B /\ B = C ) -> A R C ) |
| 9 | 8 | a1d | |- ( ( A R B /\ B = C ) -> ( ( R Po X /\ ( A e. X /\ B e. X /\ C e. X ) ) -> A R C ) ) |
| 10 | 6 9 | jaodan | |- ( ( A R B /\ ( B R C \/ B = C ) ) -> ( ( R Po X /\ ( A e. X /\ B e. X /\ C e. X ) ) -> A R C ) ) |
| 11 | 10 | com12 | |- ( ( R Po X /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A R B /\ ( B R C \/ B = C ) ) -> A R C ) ) |
| 12 | 4 11 | sylbid | |- ( ( R Po X /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A R B /\ B ( R u. _I ) C ) -> A R C ) ) |