This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A partial order is irreflexive. (Contributed by Mario Carneiro, 2-Nov-2015) (Proof shortened by Peter Mazsa, 2-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | poirr2 | ⊢ ( 𝑅 Po 𝐴 → ( 𝑅 ∩ ( I ↾ 𝐴 ) ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres | ⊢ Rel ( I ↾ 𝐴 ) | |
| 2 | relin2 | ⊢ ( Rel ( I ↾ 𝐴 ) → Rel ( 𝑅 ∩ ( I ↾ 𝐴 ) ) ) | |
| 3 | 1 2 | mp1i | ⊢ ( 𝑅 Po 𝐴 → Rel ( 𝑅 ∩ ( I ↾ 𝐴 ) ) ) |
| 4 | df-br | ⊢ ( 𝑥 ( 𝑅 ∩ ( I ↾ 𝐴 ) ) 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∩ ( I ↾ 𝐴 ) ) ) | |
| 5 | brin | ⊢ ( 𝑥 ( 𝑅 ∩ ( I ↾ 𝐴 ) ) 𝑦 ↔ ( 𝑥 𝑅 𝑦 ∧ 𝑥 ( I ↾ 𝐴 ) 𝑦 ) ) | |
| 6 | 4 5 | bitr3i | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∩ ( I ↾ 𝐴 ) ) ↔ ( 𝑥 𝑅 𝑦 ∧ 𝑥 ( I ↾ 𝐴 ) 𝑦 ) ) |
| 7 | vex | ⊢ 𝑦 ∈ V | |
| 8 | 7 | brresi | ⊢ ( 𝑥 ( I ↾ 𝐴 ) 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 I 𝑦 ) ) |
| 9 | poirr | ⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 𝑅 𝑥 ) | |
| 10 | 7 | ideq | ⊢ ( 𝑥 I 𝑦 ↔ 𝑥 = 𝑦 ) |
| 11 | breq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) ) | |
| 12 | 10 11 | sylbi | ⊢ ( 𝑥 I 𝑦 → ( 𝑥 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) ) |
| 13 | 12 | notbid | ⊢ ( 𝑥 I 𝑦 → ( ¬ 𝑥 𝑅 𝑥 ↔ ¬ 𝑥 𝑅 𝑦 ) ) |
| 14 | 9 13 | syl5ibcom | ⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 I 𝑦 → ¬ 𝑥 𝑅 𝑦 ) ) |
| 15 | 14 | expimpd | ⊢ ( 𝑅 Po 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 I 𝑦 ) → ¬ 𝑥 𝑅 𝑦 ) ) |
| 16 | 8 15 | biimtrid | ⊢ ( 𝑅 Po 𝐴 → ( 𝑥 ( I ↾ 𝐴 ) 𝑦 → ¬ 𝑥 𝑅 𝑦 ) ) |
| 17 | 16 | con2d | ⊢ ( 𝑅 Po 𝐴 → ( 𝑥 𝑅 𝑦 → ¬ 𝑥 ( I ↾ 𝐴 ) 𝑦 ) ) |
| 18 | imnan | ⊢ ( ( 𝑥 𝑅 𝑦 → ¬ 𝑥 ( I ↾ 𝐴 ) 𝑦 ) ↔ ¬ ( 𝑥 𝑅 𝑦 ∧ 𝑥 ( I ↾ 𝐴 ) 𝑦 ) ) | |
| 19 | 17 18 | sylib | ⊢ ( 𝑅 Po 𝐴 → ¬ ( 𝑥 𝑅 𝑦 ∧ 𝑥 ( I ↾ 𝐴 ) 𝑦 ) ) |
| 20 | 19 | pm2.21d | ⊢ ( 𝑅 Po 𝐴 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑥 ( I ↾ 𝐴 ) 𝑦 ) → 〈 𝑥 , 𝑦 〉 ∈ ∅ ) ) |
| 21 | 6 20 | biimtrid | ⊢ ( 𝑅 Po 𝐴 → ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∩ ( I ↾ 𝐴 ) ) → 〈 𝑥 , 𝑦 〉 ∈ ∅ ) ) |
| 22 | 3 21 | relssdv | ⊢ ( 𝑅 Po 𝐴 → ( 𝑅 ∩ ( I ↾ 𝐴 ) ) ⊆ ∅ ) |
| 23 | ss0 | ⊢ ( ( 𝑅 ∩ ( I ↾ 𝐴 ) ) ⊆ ∅ → ( 𝑅 ∩ ( I ↾ 𝐴 ) ) = ∅ ) | |
| 24 | 22 23 | syl | ⊢ ( 𝑅 Po 𝐴 → ( 𝑅 ∩ ( I ↾ 𝐴 ) ) = ∅ ) |