This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A partial order is irreflexive. (Contributed by Mario Carneiro, 2-Nov-2015) (Proof shortened by Peter Mazsa, 2-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | poirr2 | |- ( R Po A -> ( R i^i ( _I |` A ) ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres | |- Rel ( _I |` A ) |
|
| 2 | relin2 | |- ( Rel ( _I |` A ) -> Rel ( R i^i ( _I |` A ) ) ) |
|
| 3 | 1 2 | mp1i | |- ( R Po A -> Rel ( R i^i ( _I |` A ) ) ) |
| 4 | df-br | |- ( x ( R i^i ( _I |` A ) ) y <-> <. x , y >. e. ( R i^i ( _I |` A ) ) ) |
|
| 5 | brin | |- ( x ( R i^i ( _I |` A ) ) y <-> ( x R y /\ x ( _I |` A ) y ) ) |
|
| 6 | 4 5 | bitr3i | |- ( <. x , y >. e. ( R i^i ( _I |` A ) ) <-> ( x R y /\ x ( _I |` A ) y ) ) |
| 7 | vex | |- y e. _V |
|
| 8 | 7 | brresi | |- ( x ( _I |` A ) y <-> ( x e. A /\ x _I y ) ) |
| 9 | poirr | |- ( ( R Po A /\ x e. A ) -> -. x R x ) |
|
| 10 | 7 | ideq | |- ( x _I y <-> x = y ) |
| 11 | breq2 | |- ( x = y -> ( x R x <-> x R y ) ) |
|
| 12 | 10 11 | sylbi | |- ( x _I y -> ( x R x <-> x R y ) ) |
| 13 | 12 | notbid | |- ( x _I y -> ( -. x R x <-> -. x R y ) ) |
| 14 | 9 13 | syl5ibcom | |- ( ( R Po A /\ x e. A ) -> ( x _I y -> -. x R y ) ) |
| 15 | 14 | expimpd | |- ( R Po A -> ( ( x e. A /\ x _I y ) -> -. x R y ) ) |
| 16 | 8 15 | biimtrid | |- ( R Po A -> ( x ( _I |` A ) y -> -. x R y ) ) |
| 17 | 16 | con2d | |- ( R Po A -> ( x R y -> -. x ( _I |` A ) y ) ) |
| 18 | imnan | |- ( ( x R y -> -. x ( _I |` A ) y ) <-> -. ( x R y /\ x ( _I |` A ) y ) ) |
|
| 19 | 17 18 | sylib | |- ( R Po A -> -. ( x R y /\ x ( _I |` A ) y ) ) |
| 20 | 19 | pm2.21d | |- ( R Po A -> ( ( x R y /\ x ( _I |` A ) y ) -> <. x , y >. e. (/) ) ) |
| 21 | 6 20 | biimtrid | |- ( R Po A -> ( <. x , y >. e. ( R i^i ( _I |` A ) ) -> <. x , y >. e. (/) ) ) |
| 22 | 3 21 | relssdv | |- ( R Po A -> ( R i^i ( _I |` A ) ) C_ (/) ) |
| 23 | ss0 | |- ( ( R i^i ( _I |` A ) ) C_ (/) -> ( R i^i ( _I |` A ) ) = (/) ) |
|
| 24 | 22 23 | syl | |- ( R Po A -> ( R i^i ( _I |` A ) ) = (/) ) |