This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for partial ordering predicate. (Contributed by NM, 27-Mar-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | poeq1 | |- ( R = S -> ( R Po A <-> S Po A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq | |- ( R = S -> ( x R x <-> x S x ) ) |
|
| 2 | 1 | notbid | |- ( R = S -> ( -. x R x <-> -. x S x ) ) |
| 3 | breq | |- ( R = S -> ( x R y <-> x S y ) ) |
|
| 4 | breq | |- ( R = S -> ( y R z <-> y S z ) ) |
|
| 5 | 3 4 | anbi12d | |- ( R = S -> ( ( x R y /\ y R z ) <-> ( x S y /\ y S z ) ) ) |
| 6 | breq | |- ( R = S -> ( x R z <-> x S z ) ) |
|
| 7 | 5 6 | imbi12d | |- ( R = S -> ( ( ( x R y /\ y R z ) -> x R z ) <-> ( ( x S y /\ y S z ) -> x S z ) ) ) |
| 8 | 2 7 | anbi12d | |- ( R = S -> ( ( -. x R x /\ ( ( x R y /\ y R z ) -> x R z ) ) <-> ( -. x S x /\ ( ( x S y /\ y S z ) -> x S z ) ) ) ) |
| 9 | 8 | ralbidv | |- ( R = S -> ( A. z e. A ( -. x R x /\ ( ( x R y /\ y R z ) -> x R z ) ) <-> A. z e. A ( -. x S x /\ ( ( x S y /\ y S z ) -> x S z ) ) ) ) |
| 10 | 9 | 2ralbidv | |- ( R = S -> ( A. x e. A A. y e. A A. z e. A ( -. x R x /\ ( ( x R y /\ y R z ) -> x R z ) ) <-> A. x e. A A. y e. A A. z e. A ( -. x S x /\ ( ( x S y /\ y S z ) -> x S z ) ) ) ) |
| 11 | df-po | |- ( R Po A <-> A. x e. A A. y e. A A. z e. A ( -. x R x /\ ( ( x R y /\ y R z ) -> x R z ) ) ) |
|
| 12 | df-po | |- ( S Po A <-> A. x e. A A. y e. A A. z e. A ( -. x S x /\ ( ( x S y /\ y S z ) -> x S z ) ) ) |
|
| 13 | 10 11 12 | 3bitr4g | |- ( R = S -> ( R Po A <-> S Po A ) ) |