This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A partial order has no 3-cycle loops. (Contributed by NM, 27-Mar-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | po3nr | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ¬ ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐷 ∧ 𝐷 𝑅 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | po2nr | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ¬ ( 𝐵 𝑅 𝐷 ∧ 𝐷 𝑅 𝐵 ) ) | |
| 2 | 1 | 3adantr2 | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ¬ ( 𝐵 𝑅 𝐷 ∧ 𝐷 𝑅 𝐵 ) ) |
| 3 | df-3an | ⊢ ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐷 ∧ 𝐷 𝑅 𝐵 ) ↔ ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐷 ) ∧ 𝐷 𝑅 𝐵 ) ) | |
| 4 | potr | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) ) | |
| 5 | 4 | anim1d | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐷 ) ∧ 𝐷 𝑅 𝐵 ) → ( 𝐵 𝑅 𝐷 ∧ 𝐷 𝑅 𝐵 ) ) ) |
| 6 | 3 5 | biimtrid | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐷 ∧ 𝐷 𝑅 𝐵 ) → ( 𝐵 𝑅 𝐷 ∧ 𝐷 𝑅 𝐵 ) ) ) |
| 7 | 2 6 | mtod | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ¬ ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐷 ∧ 𝐷 𝑅 𝐵 ) ) |