This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two sets related by a partial order are not equal. (Contributed by AV, 13-Mar-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | po2ne | ⊢ ( ( 𝑅 Po 𝑉 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 𝑅 𝐵 ) → 𝐴 ≠ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 𝑅 𝐵 ↔ 𝐵 𝑅 𝐵 ) ) | |
| 2 | poirr | ⊢ ( ( 𝑅 Po 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ¬ 𝐵 𝑅 𝐵 ) | |
| 3 | 2 | adantrl | ⊢ ( ( 𝑅 Po 𝑉 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ¬ 𝐵 𝑅 𝐵 ) |
| 4 | 3 | pm2.21d | ⊢ ( ( 𝑅 Po 𝑉 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝐵 𝑅 𝐵 → 𝐴 ≠ 𝐵 ) ) |
| 5 | 4 | ex | ⊢ ( 𝑅 Po 𝑉 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐵 𝑅 𝐵 → 𝐴 ≠ 𝐵 ) ) ) |
| 6 | 5 | com13 | ⊢ ( 𝐵 𝑅 𝐵 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝑅 Po 𝑉 → 𝐴 ≠ 𝐵 ) ) ) |
| 7 | 1 6 | biimtrdi | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 𝑅 𝐵 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝑅 Po 𝑉 → 𝐴 ≠ 𝐵 ) ) ) ) |
| 8 | 7 | com24 | ⊢ ( 𝐴 = 𝐵 → ( 𝑅 Po 𝑉 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 𝑅 𝐵 → 𝐴 ≠ 𝐵 ) ) ) ) |
| 9 | 8 | 3impd | ⊢ ( 𝐴 = 𝐵 → ( ( 𝑅 Po 𝑉 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 𝑅 𝐵 ) → 𝐴 ≠ 𝐵 ) ) |
| 10 | ax-1 | ⊢ ( 𝐴 ≠ 𝐵 → ( ( 𝑅 Po 𝑉 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 𝑅 𝐵 ) → 𝐴 ≠ 𝐵 ) ) | |
| 11 | 9 10 | pm2.61ine | ⊢ ( ( 𝑅 Po 𝑉 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 𝑅 𝐵 ) → 𝐴 ≠ 𝐵 ) |