This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two sets related by a partial order are not equal. (Contributed by AV, 13-Mar-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | po2ne | |- ( ( R Po V /\ ( A e. V /\ B e. V ) /\ A R B ) -> A =/= B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | |- ( A = B -> ( A R B <-> B R B ) ) |
|
| 2 | poirr | |- ( ( R Po V /\ B e. V ) -> -. B R B ) |
|
| 3 | 2 | adantrl | |- ( ( R Po V /\ ( A e. V /\ B e. V ) ) -> -. B R B ) |
| 4 | 3 | pm2.21d | |- ( ( R Po V /\ ( A e. V /\ B e. V ) ) -> ( B R B -> A =/= B ) ) |
| 5 | 4 | ex | |- ( R Po V -> ( ( A e. V /\ B e. V ) -> ( B R B -> A =/= B ) ) ) |
| 6 | 5 | com13 | |- ( B R B -> ( ( A e. V /\ B e. V ) -> ( R Po V -> A =/= B ) ) ) |
| 7 | 1 6 | biimtrdi | |- ( A = B -> ( A R B -> ( ( A e. V /\ B e. V ) -> ( R Po V -> A =/= B ) ) ) ) |
| 8 | 7 | com24 | |- ( A = B -> ( R Po V -> ( ( A e. V /\ B e. V ) -> ( A R B -> A =/= B ) ) ) ) |
| 9 | 8 | 3impd | |- ( A = B -> ( ( R Po V /\ ( A e. V /\ B e. V ) /\ A R B ) -> A =/= B ) ) |
| 10 | ax-1 | |- ( A =/= B -> ( ( R Po V /\ ( A e. V /\ B e. V ) /\ A R B ) -> A =/= B ) ) |
|
| 11 | 9 10 | pm2.61ine | |- ( ( R Po V /\ ( A e. V /\ B e. V ) /\ A R B ) -> A =/= B ) |