This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the partial mapping operation. ( A ^pm B ) is the set of all partial functions that map from B to A . (Contributed by NM, 15-Nov-2007) (Revised by Mario Carneiro, 8-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pmvalg | |- ( ( A e. C /\ B e. D ) -> ( A ^pm B ) = { f e. ~P ( B X. A ) | Fun f } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 | |- { f e. ~P ( B X. A ) | Fun f } C_ ~P ( B X. A ) |
|
| 2 | xpexg | |- ( ( B e. D /\ A e. C ) -> ( B X. A ) e. _V ) |
|
| 3 | 2 | ancoms | |- ( ( A e. C /\ B e. D ) -> ( B X. A ) e. _V ) |
| 4 | 3 | pwexd | |- ( ( A e. C /\ B e. D ) -> ~P ( B X. A ) e. _V ) |
| 5 | ssexg | |- ( ( { f e. ~P ( B X. A ) | Fun f } C_ ~P ( B X. A ) /\ ~P ( B X. A ) e. _V ) -> { f e. ~P ( B X. A ) | Fun f } e. _V ) |
|
| 6 | 1 4 5 | sylancr | |- ( ( A e. C /\ B e. D ) -> { f e. ~P ( B X. A ) | Fun f } e. _V ) |
| 7 | elex | |- ( A e. C -> A e. _V ) |
|
| 8 | elex | |- ( B e. D -> B e. _V ) |
|
| 9 | xpeq2 | |- ( x = A -> ( y X. x ) = ( y X. A ) ) |
|
| 10 | 9 | pweqd | |- ( x = A -> ~P ( y X. x ) = ~P ( y X. A ) ) |
| 11 | 10 | rabeqdv | |- ( x = A -> { f e. ~P ( y X. x ) | Fun f } = { f e. ~P ( y X. A ) | Fun f } ) |
| 12 | xpeq1 | |- ( y = B -> ( y X. A ) = ( B X. A ) ) |
|
| 13 | 12 | pweqd | |- ( y = B -> ~P ( y X. A ) = ~P ( B X. A ) ) |
| 14 | 13 | rabeqdv | |- ( y = B -> { f e. ~P ( y X. A ) | Fun f } = { f e. ~P ( B X. A ) | Fun f } ) |
| 15 | df-pm | |- ^pm = ( x e. _V , y e. _V |-> { f e. ~P ( y X. x ) | Fun f } ) |
|
| 16 | 11 14 15 | ovmpog | |- ( ( A e. _V /\ B e. _V /\ { f e. ~P ( B X. A ) | Fun f } e. _V ) -> ( A ^pm B ) = { f e. ~P ( B X. A ) | Fun f } ) |
| 17 | 16 | 3expia | |- ( ( A e. _V /\ B e. _V ) -> ( { f e. ~P ( B X. A ) | Fun f } e. _V -> ( A ^pm B ) = { f e. ~P ( B X. A ) | Fun f } ) ) |
| 18 | 7 8 17 | syl2an | |- ( ( A e. C /\ B e. D ) -> ( { f e. ~P ( B X. A ) | Fun f } e. _V -> ( A ^pm B ) = { f e. ~P ( B X. A ) | Fun f } ) ) |
| 19 | 6 18 | mpd | |- ( ( A e. C /\ B e. D ) -> ( A ^pm B ) = { f e. ~P ( B X. A ) | Fun f } ) |