This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of set exponentiation (inference version). ( A ^m B ) is the set of all functions that map from B to A . Definition 10.24 of Kunen p. 24. (Contributed by NM, 8-Dec-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mapval.1 | ⊢ 𝐴 ∈ V | |
| mapval.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | mapval | ⊢ ( 𝐴 ↑m 𝐵 ) = { 𝑓 ∣ 𝑓 : 𝐵 ⟶ 𝐴 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapval.1 | ⊢ 𝐴 ∈ V | |
| 2 | mapval.2 | ⊢ 𝐵 ∈ V | |
| 3 | mapvalg | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ↑m 𝐵 ) = { 𝑓 ∣ 𝑓 : 𝐵 ⟶ 𝐴 } ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( 𝐴 ↑m 𝐵 ) = { 𝑓 ∣ 𝑓 : 𝐵 ⟶ 𝐴 } |