This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a transposition of two given points, all other points are mapped to themselves. (Contributed by AV, 17-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pmtrfval.t | |- T = ( pmTrsp ` D ) |
|
| Assertion | pmtrprfv3 | |- ( ( D e. V /\ ( X e. D /\ Y e. D /\ Z e. D ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( ( T ` { X , Y } ) ` Z ) = Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrfval.t | |- T = ( pmTrsp ` D ) |
|
| 2 | simp1 | |- ( ( D e. V /\ ( X e. D /\ Y e. D /\ Z e. D ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> D e. V ) |
|
| 3 | simp1 | |- ( ( X e. D /\ Y e. D /\ Z e. D ) -> X e. D ) |
|
| 4 | 3 | 3ad2ant2 | |- ( ( D e. V /\ ( X e. D /\ Y e. D /\ Z e. D ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> X e. D ) |
| 5 | simp22 | |- ( ( D e. V /\ ( X e. D /\ Y e. D /\ Z e. D ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> Y e. D ) |
|
| 6 | 4 5 | prssd | |- ( ( D e. V /\ ( X e. D /\ Y e. D /\ Z e. D ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> { X , Y } C_ D ) |
| 7 | enpr2 | |- ( ( X e. D /\ Y e. D /\ X =/= Y ) -> { X , Y } ~~ 2o ) |
|
| 8 | 7 | 3expia | |- ( ( X e. D /\ Y e. D ) -> ( X =/= Y -> { X , Y } ~~ 2o ) ) |
| 9 | 8 | 3adant3 | |- ( ( X e. D /\ Y e. D /\ Z e. D ) -> ( X =/= Y -> { X , Y } ~~ 2o ) ) |
| 10 | 9 | com12 | |- ( X =/= Y -> ( ( X e. D /\ Y e. D /\ Z e. D ) -> { X , Y } ~~ 2o ) ) |
| 11 | 10 | 3ad2ant1 | |- ( ( X =/= Y /\ X =/= Z /\ Y =/= Z ) -> ( ( X e. D /\ Y e. D /\ Z e. D ) -> { X , Y } ~~ 2o ) ) |
| 12 | 11 | impcom | |- ( ( ( X e. D /\ Y e. D /\ Z e. D ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> { X , Y } ~~ 2o ) |
| 13 | 12 | 3adant1 | |- ( ( D e. V /\ ( X e. D /\ Y e. D /\ Z e. D ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> { X , Y } ~~ 2o ) |
| 14 | simp23 | |- ( ( D e. V /\ ( X e. D /\ Y e. D /\ Z e. D ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> Z e. D ) |
|
| 15 | 1 | pmtrfv | |- ( ( ( D e. V /\ { X , Y } C_ D /\ { X , Y } ~~ 2o ) /\ Z e. D ) -> ( ( T ` { X , Y } ) ` Z ) = if ( Z e. { X , Y } , U. ( { X , Y } \ { Z } ) , Z ) ) |
| 16 | 2 6 13 14 15 | syl31anc | |- ( ( D e. V /\ ( X e. D /\ Y e. D /\ Z e. D ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( ( T ` { X , Y } ) ` Z ) = if ( Z e. { X , Y } , U. ( { X , Y } \ { Z } ) , Z ) ) |
| 17 | necom | |- ( X =/= Z <-> Z =/= X ) |
|
| 18 | 17 | biimpi | |- ( X =/= Z -> Z =/= X ) |
| 19 | 18 | 3ad2ant2 | |- ( ( X =/= Y /\ X =/= Z /\ Y =/= Z ) -> Z =/= X ) |
| 20 | 19 | 3ad2ant3 | |- ( ( D e. V /\ ( X e. D /\ Y e. D /\ Z e. D ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> Z =/= X ) |
| 21 | necom | |- ( Y =/= Z <-> Z =/= Y ) |
|
| 22 | 21 | biimpi | |- ( Y =/= Z -> Z =/= Y ) |
| 23 | 22 | 3ad2ant3 | |- ( ( X =/= Y /\ X =/= Z /\ Y =/= Z ) -> Z =/= Y ) |
| 24 | 23 | 3ad2ant3 | |- ( ( D e. V /\ ( X e. D /\ Y e. D /\ Z e. D ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> Z =/= Y ) |
| 25 | 20 24 | nelprd | |- ( ( D e. V /\ ( X e. D /\ Y e. D /\ Z e. D ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> -. Z e. { X , Y } ) |
| 26 | 25 | iffalsed | |- ( ( D e. V /\ ( X e. D /\ Y e. D /\ Z e. D ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> if ( Z e. { X , Y } , U. ( { X , Y } \ { Z } ) , Z ) = Z ) |
| 27 | 16 26 | eqtrd | |- ( ( D e. V /\ ( X e. D /\ Y e. D /\ Z e. D ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( ( T ` { X , Y } ) ` Z ) = Z ) |