This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transpositions over sets with at least 3 elements are not commutative, see also the remark in Rotman p. 28. (Contributed by AV, 21-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pmtr3ncom.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| Assertion | pmtr3ncom | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 3 ≤ ( ♯ ‘ 𝐷 ) ) → ∃ 𝑓 ∈ ran 𝑇 ∃ 𝑔 ∈ ran 𝑇 ( 𝑔 ∘ 𝑓 ) ≠ ( 𝑓 ∘ 𝑔 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtr3ncom.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| 2 | hashge3el3dif | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 3 ≤ ( ♯ ‘ 𝐷 ) ) → ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 ∃ 𝑧 ∈ 𝐷 ( 𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) ) | |
| 3 | simprl | ⊢ ( ( ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐷 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) ) ∧ ( 𝐷 ∈ 𝑉 ∧ 3 ≤ ( ♯ ‘ 𝐷 ) ) ) → 𝐷 ∈ 𝑉 ) | |
| 4 | prssi | ⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → { 𝑥 , 𝑦 } ⊆ 𝐷 ) | |
| 5 | 4 | adantr | ⊢ ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐷 ) → { 𝑥 , 𝑦 } ⊆ 𝐷 ) |
| 6 | 5 | ad2antrr | ⊢ ( ( ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐷 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) ) ∧ ( 𝐷 ∈ 𝑉 ∧ 3 ≤ ( ♯ ‘ 𝐷 ) ) ) → { 𝑥 , 𝑦 } ⊆ 𝐷 ) |
| 7 | simplll | ⊢ ( ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐷 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) ) → 𝑥 ∈ 𝐷 ) | |
| 8 | simplr | ⊢ ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐷 ) → 𝑦 ∈ 𝐷 ) | |
| 9 | 8 | adantr | ⊢ ( ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐷 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) ) → 𝑦 ∈ 𝐷 ) |
| 10 | simpr1 | ⊢ ( ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐷 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) ) → 𝑥 ≠ 𝑦 ) | |
| 11 | enpr2 | ⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑥 ≠ 𝑦 ) → { 𝑥 , 𝑦 } ≈ 2o ) | |
| 12 | 7 9 10 11 | syl3anc | ⊢ ( ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐷 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) ) → { 𝑥 , 𝑦 } ≈ 2o ) |
| 13 | 12 | adantr | ⊢ ( ( ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐷 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) ) ∧ ( 𝐷 ∈ 𝑉 ∧ 3 ≤ ( ♯ ‘ 𝐷 ) ) ) → { 𝑥 , 𝑦 } ≈ 2o ) |
| 14 | eqid | ⊢ ran 𝑇 = ran 𝑇 | |
| 15 | 1 14 | pmtrrn | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ { 𝑥 , 𝑦 } ≈ 2o ) → ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ∈ ran 𝑇 ) |
| 16 | 3 6 13 15 | syl3anc | ⊢ ( ( ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐷 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) ) ∧ ( 𝐷 ∈ 𝑉 ∧ 3 ≤ ( ♯ ‘ 𝐷 ) ) ) → ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ∈ ran 𝑇 ) |
| 17 | prssi | ⊢ ( ( 𝑦 ∈ 𝐷 ∧ 𝑧 ∈ 𝐷 ) → { 𝑦 , 𝑧 } ⊆ 𝐷 ) | |
| 18 | 17 | ad5ant23 | ⊢ ( ( ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐷 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) ) ∧ ( 𝐷 ∈ 𝑉 ∧ 3 ≤ ( ♯ ‘ 𝐷 ) ) ) → { 𝑦 , 𝑧 } ⊆ 𝐷 ) |
| 19 | simplr | ⊢ ( ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐷 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) ) → 𝑧 ∈ 𝐷 ) | |
| 20 | simpr3 | ⊢ ( ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐷 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) ) → 𝑦 ≠ 𝑧 ) | |
| 21 | enpr2 | ⊢ ( ( 𝑦 ∈ 𝐷 ∧ 𝑧 ∈ 𝐷 ∧ 𝑦 ≠ 𝑧 ) → { 𝑦 , 𝑧 } ≈ 2o ) | |
| 22 | 9 19 20 21 | syl3anc | ⊢ ( ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐷 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) ) → { 𝑦 , 𝑧 } ≈ 2o ) |
| 23 | 22 | adantr | ⊢ ( ( ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐷 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) ) ∧ ( 𝐷 ∈ 𝑉 ∧ 3 ≤ ( ♯ ‘ 𝐷 ) ) ) → { 𝑦 , 𝑧 } ≈ 2o ) |
| 24 | 1 14 | pmtrrn | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ { 𝑦 , 𝑧 } ⊆ 𝐷 ∧ { 𝑦 , 𝑧 } ≈ 2o ) → ( 𝑇 ‘ { 𝑦 , 𝑧 } ) ∈ ran 𝑇 ) |
| 25 | 3 18 23 24 | syl3anc | ⊢ ( ( ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐷 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) ) ∧ ( 𝐷 ∈ 𝑉 ∧ 3 ≤ ( ♯ ‘ 𝐷 ) ) ) → ( 𝑇 ‘ { 𝑦 , 𝑧 } ) ∈ ran 𝑇 ) |
| 26 | df-3an | ⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑧 ∈ 𝐷 ) ↔ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐷 ) ) | |
| 27 | 26 | biimpri | ⊢ ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐷 ) → ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑧 ∈ 𝐷 ) ) |
| 28 | 27 | ad2antrr | ⊢ ( ( ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐷 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) ) ∧ ( 𝐷 ∈ 𝑉 ∧ 3 ≤ ( ♯ ‘ 𝐷 ) ) ) → ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑧 ∈ 𝐷 ) ) |
| 29 | simplr | ⊢ ( ( ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐷 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) ) ∧ ( 𝐷 ∈ 𝑉 ∧ 3 ≤ ( ♯ ‘ 𝐷 ) ) ) → ( 𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) ) | |
| 30 | eqid | ⊢ ( 𝑇 ‘ { 𝑥 , 𝑦 } ) = ( 𝑇 ‘ { 𝑥 , 𝑦 } ) | |
| 31 | eqid | ⊢ ( 𝑇 ‘ { 𝑦 , 𝑧 } ) = ( 𝑇 ‘ { 𝑦 , 𝑧 } ) | |
| 32 | 1 30 31 | pmtr3ncomlem2 | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑧 ∈ 𝐷 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) ) → ( ( 𝑇 ‘ { 𝑦 , 𝑧 } ) ∘ ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ) ≠ ( ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ∘ ( 𝑇 ‘ { 𝑦 , 𝑧 } ) ) ) |
| 33 | 3 28 29 32 | syl3anc | ⊢ ( ( ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐷 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) ) ∧ ( 𝐷 ∈ 𝑉 ∧ 3 ≤ ( ♯ ‘ 𝐷 ) ) ) → ( ( 𝑇 ‘ { 𝑦 , 𝑧 } ) ∘ ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ) ≠ ( ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ∘ ( 𝑇 ‘ { 𝑦 , 𝑧 } ) ) ) |
| 34 | coeq2 | ⊢ ( 𝑓 = ( 𝑇 ‘ { 𝑥 , 𝑦 } ) → ( 𝑔 ∘ 𝑓 ) = ( 𝑔 ∘ ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ) ) | |
| 35 | coeq1 | ⊢ ( 𝑓 = ( 𝑇 ‘ { 𝑥 , 𝑦 } ) → ( 𝑓 ∘ 𝑔 ) = ( ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ∘ 𝑔 ) ) | |
| 36 | 34 35 | neeq12d | ⊢ ( 𝑓 = ( 𝑇 ‘ { 𝑥 , 𝑦 } ) → ( ( 𝑔 ∘ 𝑓 ) ≠ ( 𝑓 ∘ 𝑔 ) ↔ ( 𝑔 ∘ ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ) ≠ ( ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ∘ 𝑔 ) ) ) |
| 37 | coeq1 | ⊢ ( 𝑔 = ( 𝑇 ‘ { 𝑦 , 𝑧 } ) → ( 𝑔 ∘ ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ) = ( ( 𝑇 ‘ { 𝑦 , 𝑧 } ) ∘ ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ) ) | |
| 38 | coeq2 | ⊢ ( 𝑔 = ( 𝑇 ‘ { 𝑦 , 𝑧 } ) → ( ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ∘ 𝑔 ) = ( ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ∘ ( 𝑇 ‘ { 𝑦 , 𝑧 } ) ) ) | |
| 39 | 37 38 | neeq12d | ⊢ ( 𝑔 = ( 𝑇 ‘ { 𝑦 , 𝑧 } ) → ( ( 𝑔 ∘ ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ) ≠ ( ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ∘ 𝑔 ) ↔ ( ( 𝑇 ‘ { 𝑦 , 𝑧 } ) ∘ ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ) ≠ ( ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ∘ ( 𝑇 ‘ { 𝑦 , 𝑧 } ) ) ) ) |
| 40 | 36 39 | rspc2ev | ⊢ ( ( ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ∈ ran 𝑇 ∧ ( 𝑇 ‘ { 𝑦 , 𝑧 } ) ∈ ran 𝑇 ∧ ( ( 𝑇 ‘ { 𝑦 , 𝑧 } ) ∘ ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ) ≠ ( ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ∘ ( 𝑇 ‘ { 𝑦 , 𝑧 } ) ) ) → ∃ 𝑓 ∈ ran 𝑇 ∃ 𝑔 ∈ ran 𝑇 ( 𝑔 ∘ 𝑓 ) ≠ ( 𝑓 ∘ 𝑔 ) ) |
| 41 | 16 25 33 40 | syl3anc | ⊢ ( ( ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐷 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) ) ∧ ( 𝐷 ∈ 𝑉 ∧ 3 ≤ ( ♯ ‘ 𝐷 ) ) ) → ∃ 𝑓 ∈ ran 𝑇 ∃ 𝑔 ∈ ran 𝑇 ( 𝑔 ∘ 𝑓 ) ≠ ( 𝑓 ∘ 𝑔 ) ) |
| 42 | 41 | exp31 | ⊢ ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐷 ) → ( ( 𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) → ( ( 𝐷 ∈ 𝑉 ∧ 3 ≤ ( ♯ ‘ 𝐷 ) ) → ∃ 𝑓 ∈ ran 𝑇 ∃ 𝑔 ∈ ran 𝑇 ( 𝑔 ∘ 𝑓 ) ≠ ( 𝑓 ∘ 𝑔 ) ) ) ) |
| 43 | 42 | rexlimdva | ⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → ( ∃ 𝑧 ∈ 𝐷 ( 𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) → ( ( 𝐷 ∈ 𝑉 ∧ 3 ≤ ( ♯ ‘ 𝐷 ) ) → ∃ 𝑓 ∈ ran 𝑇 ∃ 𝑔 ∈ ran 𝑇 ( 𝑔 ∘ 𝑓 ) ≠ ( 𝑓 ∘ 𝑔 ) ) ) ) |
| 44 | 43 | rexlimivv | ⊢ ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 ∃ 𝑧 ∈ 𝐷 ( 𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ) → ( ( 𝐷 ∈ 𝑉 ∧ 3 ≤ ( ♯ ‘ 𝐷 ) ) → ∃ 𝑓 ∈ ran 𝑇 ∃ 𝑔 ∈ ran 𝑇 ( 𝑔 ∘ 𝑓 ) ≠ ( 𝑓 ∘ 𝑔 ) ) ) |
| 45 | 2 44 | mpcom | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 3 ≤ ( ♯ ‘ 𝐷 ) ) → ∃ 𝑓 ∈ ran 𝑇 ∃ 𝑔 ∈ ran 𝑇 ( 𝑔 ∘ 𝑓 ) ≠ ( 𝑓 ∘ 𝑔 ) ) |