This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for pmtr3ncom . (Contributed by AV, 17-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtr3ncom.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| pmtr3ncom.f | ⊢ 𝐹 = ( 𝑇 ‘ { 𝑋 , 𝑌 } ) | ||
| pmtr3ncom.g | ⊢ 𝐺 = ( 𝑇 ‘ { 𝑌 , 𝑍 } ) | ||
| Assertion | pmtr3ncomlem2 | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → ( 𝐺 ∘ 𝐹 ) ≠ ( 𝐹 ∘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtr3ncom.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| 2 | pmtr3ncom.f | ⊢ 𝐹 = ( 𝑇 ‘ { 𝑋 , 𝑌 } ) | |
| 3 | pmtr3ncom.g | ⊢ 𝐺 = ( 𝑇 ‘ { 𝑌 , 𝑍 } ) | |
| 4 | 1 2 3 | pmtr3ncomlem1 | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑋 ) ≠ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) ) |
| 5 | fveq1 | ⊢ ( ( 𝐺 ∘ 𝐹 ) = ( 𝐹 ∘ 𝐺 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑋 ) = ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) ) | |
| 6 | 5 | necon3i | ⊢ ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑋 ) ≠ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) → ( 𝐺 ∘ 𝐹 ) ≠ ( 𝐹 ∘ 𝐺 ) ) |
| 7 | 4 6 | syl | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → ( 𝐺 ∘ 𝐹 ) ≠ ( 𝐹 ∘ 𝐺 ) ) |