This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction eliminating three inequalities in an antecedent. (Contributed by NM, 15-Jun-2013) (Proof shortened by Wolf Lammen, 25-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pm2.61da3ne.1 | ⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝜓 ) | |
| pm2.61da3ne.2 | ⊢ ( ( 𝜑 ∧ 𝐶 = 𝐷 ) → 𝜓 ) | ||
| pm2.61da3ne.3 | ⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → 𝜓 ) | ||
| pm2.61da3ne.4 | ⊢ ( ( 𝜑 ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷 ∧ 𝐸 ≠ 𝐹 ) ) → 𝜓 ) | ||
| Assertion | pm2.61da3ne | ⊢ ( 𝜑 → 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61da3ne.1 | ⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝜓 ) | |
| 2 | pm2.61da3ne.2 | ⊢ ( ( 𝜑 ∧ 𝐶 = 𝐷 ) → 𝜓 ) | |
| 3 | pm2.61da3ne.3 | ⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → 𝜓 ) | |
| 4 | pm2.61da3ne.4 | ⊢ ( ( 𝜑 ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷 ∧ 𝐸 ≠ 𝐹 ) ) → 𝜓 ) | |
| 5 | 1 | a1d | ⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( ( 𝐶 ≠ 𝐷 ∧ 𝐸 ≠ 𝐹 ) → 𝜓 ) ) |
| 6 | 4 | 3exp2 | ⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 → ( 𝐶 ≠ 𝐷 → ( 𝐸 ≠ 𝐹 → 𝜓 ) ) ) ) |
| 7 | 6 | imp4b | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐶 ≠ 𝐷 ∧ 𝐸 ≠ 𝐹 ) → 𝜓 ) ) |
| 8 | 5 7 | pm2.61dane | ⊢ ( 𝜑 → ( ( 𝐶 ≠ 𝐷 ∧ 𝐸 ≠ 𝐹 ) → 𝜓 ) ) |
| 9 | 8 | imp | ⊢ ( ( 𝜑 ∧ ( 𝐶 ≠ 𝐷 ∧ 𝐸 ≠ 𝐹 ) ) → 𝜓 ) |
| 10 | 2 3 9 | pm2.61da2ne | ⊢ ( 𝜑 → 𝜓 ) |