This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: Deduction eliminating three inequalities in an antecedent. (Contributed by NM, 15-Jun-2013) (Proof shortened by Wolf Lammen, 25-Nov-2019)
|
|
Ref |
Expression |
|
Hypotheses |
pm2.61da3ne.1 |
|
|
|
pm2.61da3ne.2 |
|
|
|
pm2.61da3ne.3 |
|
|
|
pm2.61da3ne.4 |
|
|
Assertion |
pm2.61da3ne |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pm2.61da3ne.1 |
|
| 2 |
|
pm2.61da3ne.2 |
|
| 3 |
|
pm2.61da3ne.3 |
|
| 4 |
|
pm2.61da3ne.4 |
|
| 5 |
1
|
a1d |
|
| 6 |
4
|
3exp2 |
|
| 7 |
6
|
imp4b |
|
| 8 |
5 7
|
pm2.61dane |
|
| 9 |
8
|
imp |
|
| 10 |
2 3 9
|
pm2.61da2ne |
|