This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction eliminating three inequalities in an antecedent. (Contributed by NM, 15-Jun-2013) (Proof shortened by Wolf Lammen, 25-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pm2.61da3ne.1 | |- ( ( ph /\ A = B ) -> ps ) |
|
| pm2.61da3ne.2 | |- ( ( ph /\ C = D ) -> ps ) |
||
| pm2.61da3ne.3 | |- ( ( ph /\ E = F ) -> ps ) |
||
| pm2.61da3ne.4 | |- ( ( ph /\ ( A =/= B /\ C =/= D /\ E =/= F ) ) -> ps ) |
||
| Assertion | pm2.61da3ne | |- ( ph -> ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61da3ne.1 | |- ( ( ph /\ A = B ) -> ps ) |
|
| 2 | pm2.61da3ne.2 | |- ( ( ph /\ C = D ) -> ps ) |
|
| 3 | pm2.61da3ne.3 | |- ( ( ph /\ E = F ) -> ps ) |
|
| 4 | pm2.61da3ne.4 | |- ( ( ph /\ ( A =/= B /\ C =/= D /\ E =/= F ) ) -> ps ) |
|
| 5 | 1 | a1d | |- ( ( ph /\ A = B ) -> ( ( C =/= D /\ E =/= F ) -> ps ) ) |
| 6 | 4 | 3exp2 | |- ( ph -> ( A =/= B -> ( C =/= D -> ( E =/= F -> ps ) ) ) ) |
| 7 | 6 | imp4b | |- ( ( ph /\ A =/= B ) -> ( ( C =/= D /\ E =/= F ) -> ps ) ) |
| 8 | 5 7 | pm2.61dane | |- ( ph -> ( ( C =/= D /\ E =/= F ) -> ps ) ) |
| 9 | 8 | imp | |- ( ( ph /\ ( C =/= D /\ E =/= F ) ) -> ps ) |
| 10 | 2 3 9 | pm2.61da2ne | |- ( ph -> ps ) |