This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *14.123 in WhiteheadRussell p. 185. (Contributed by Andrew Salmon, 9-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm14.123b | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ∧ [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ↔ ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ∧ ∃ 𝑧 ∃ 𝑤 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2sbc5g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ↔ [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ) | |
| 2 | 1 | adantr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ) → ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ↔ [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ) |
| 3 | nfa1 | ⊢ Ⅎ 𝑧 ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) | |
| 4 | nfa2 | ⊢ Ⅎ 𝑤 ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) | |
| 5 | simpr | ⊢ ( ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) → 𝜑 ) | |
| 6 | 2sp | ⊢ ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) → ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ) | |
| 7 | 6 | ancrd | ⊢ ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) → ( 𝜑 → ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ) ) |
| 8 | 5 7 | impbid2 | ⊢ ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) → ( ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ↔ 𝜑 ) ) |
| 9 | 4 8 | exbid | ⊢ ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) → ( ∃ 𝑤 ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ↔ ∃ 𝑤 𝜑 ) ) |
| 10 | 3 9 | exbid | ⊢ ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) → ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ↔ ∃ 𝑧 ∃ 𝑤 𝜑 ) ) |
| 11 | 10 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ) → ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ↔ ∃ 𝑧 ∃ 𝑤 𝜑 ) ) |
| 12 | 2 11 | bitr3d | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ) → ( [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ↔ ∃ 𝑧 ∃ 𝑤 𝜑 ) ) |
| 13 | 12 | pm5.32da | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ∧ [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ↔ ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ∧ ∃ 𝑧 ∃ 𝑤 𝜑 ) ) ) |